[1] Cerone P., Dragomir S. S., Pearce C. E. M.: 
A generalized trapezoid inequality for functions of bounded variation. Turkish J. Math. 24 (2000), 2, 147–163 
MR 1796667 | 
Zbl 0974.26011[2] Csiszár I.: 
Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85–107 
MR 0164374[3] Dragomir S. S.: 
On the Ostrowski’s inequalities for mappings with bounded variation and applications. Math. Inequ. Appl. 4 (2001), 1, 59–66 
MR 1923350[5] Kafka P., Österreicher, F., Vincze I.: 
On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422 
MR 1197090 | 
Zbl 0771.94004[6] Liese F., Vajda I.: 
Convex Statistical Distances. (Teubner–Texte zur Mathematik, Band 95.) Teubner, Leipzig 1987 
MR 0926905 | 
Zbl 0656.62004[11] Wegenkittl S.: 
A generalized $\phi $-divergence for asymptotically multivariate normal models. J. Multivariate Anal. 83 (2002), 288–302 
DOI 10.1006/jmva.2001.2051 | 
MR 1945955