Previous |  Up |  Next

Article

Keywords:
$f$-divergences; bounds; Ostrowki’s inequality
Summary:
The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^{\alpha }$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^{\alpha }$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.
References:
[1] Cerone P., Dragomir S. S., Pearce C. E. M.: A generalized trapezoid inequality for functions of bounded variation. Turkish J. Math. 24 (2000), 2, 147–163 MR 1796667 | Zbl 0974.26011
[2] Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85–107 MR 0164374
[3] Dragomir S. S.: On the Ostrowski’s inequalities for mappings with bounded variation and applications. Math. Inequ. Appl. 4 (2001), 1, 59–66 MR 1923350
[4] Dragomir S. S., Gluscević, V., Pearce C. M. E.: Csiszár $f$-divergences, Ostrowski’s inequality and mutual information. Nonlinear Anal. 47 (2001), 4, 2375–2386 DOI 10.1016/S0362-546X(01)00361-3 | MR 1971644
[5] Kafka P., Österreicher, F., Vincze I.: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422 MR 1197090 | Zbl 0771.94004
[6] Liese F., Vajda I.: Convex Statistical Distances. (Teubner–Texte zur Mathematik, Band 95.) Teubner, Leipzig 1987 MR 0926905 | Zbl 0656.62004
[7] Menéndez M., Morales D., Pardo, L., Vajda I.: Two approaches to grouping of data and related disparity statistics. Comm. Statist. Theory Methods 27 (1998), 3, 609–633 DOI 10.1080/03610929808832117 | MR 1619038 | Zbl 1126.62300
[8] Österreicher F., Vajda I.: A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), 3, 639–653 DOI 10.1007/BF02517812 | MR 2007803 | Zbl 1052.62002
[9] Puri M. L., Vincze I.: Measures of information and contiguity. Statist. Probab. Lett. 9 (1990), 223–228 DOI 10.1016/0167-7152(90)90060-K | MR 1045188
[10] Wegenkittl S.: Entropy estimators and serial tests for ergodic chains. IEEE Trans. Inform. Theory 47 (2001), 6, 2480–2489 DOI 10.1109/18.945259 | MR 1873933 | Zbl 1021.94512
[11] Wegenkittl S.: A generalized $\phi $-divergence for asymptotically multivariate normal models. J. Multivariate Anal. 83 (2002), 288–302 DOI 10.1006/jmva.2001.2051 | MR 1945955
Partner of
EuDML logo