Previous |  Up |  Next

Article

Title: Interpretability of linguistic variables: a formal account (English)
Author: Bodenhofer, Ulrich
Author: Bauer, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 2
Year: 2005
Pages: [227]-248
Summary lang: English
.
Category: math
.
Summary: This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification. (English)
Keyword: fuzzy modeling
Keyword: interpretability
Keyword: linguistic variable
Keyword: machine learning
MSC: 68T05
MSC: 68T35
MSC: 68T37
MSC: 94D05
idZBL: Zbl 1249.94093
idMR: MR2138770
.
Date available: 2009-09-24T20:08:28Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135652
.
Reference: [1] Babuška R.: Construction of fuzzy systems – interplay between precision and transparency.In: Proc. Europ. Symp. on Intelligent Techniques, Aachen 2000, pp. 445–452
Reference: [2] Bikdash M.: A highly interpretable form of Sugeno inference systems.IEEE Trans. Fuzzy Systems 7 (1999), 686–696 10.1109/91.811237
Reference: [3] Bodenhofer U.: The construction of ordering-based modifiers.In: Fuzzy-Neuro Systems ’99 (G. Brewka, R. Der, S. Gottwald and A. Schierwagen, eds.), Leipziger Universitätsverlag 1999, pp. 55–62
Reference: [4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings.(Schriftenreihe der Johannes-Kepler-Universität Linz C26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
Reference: [5] Bodenhofer U.: A general framework for ordering fuzzy sets.In: Technologies for Constructing Intelligent Systems 1: Tasks, (B. Bouchon-Meunier, J. Guitiérrez-Ríoz, L. Magdalena, and R. R. Yager, eds., Studies in Fuzziness and Soft Computing 89), Physica–Verlag, Heidelberg 2002, pp. 213–224 Zbl 1009.68150
Reference: [6] Bodenhofer U., Bauer P.: Towards an axiomatic treatment of “interpretability”.In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 334–339
Reference: [7] Bodenhofer U., Bauer P.: A formal model of interpretability of linguistic variables.In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds.), Studies in Fuzziness and Soft Computing 128), Springer, Berlin 2003, pp. 524–545 Zbl 1038.93050
Reference: [8] Bodenhofer U., Cock, M. De, Kerre E. E.: Openings and closures of fuzzy preorderings: Theoretical basics and applications to fuzzy rule-based systems.Internat. J. General Systems 4 (2003), 343–360 Zbl 1110.03048, MR 2004832, 10.1080/0308107031000135026
Reference: [9] Bodenhofer U., Klement E. P.: Genetic optimization of fuzzy classification systems – a case study.In: Computational Intelligence in Theory and Practice (B. Reusch and K.-H. Temme, eds., Advances in Soft Computing), Physica–Verlag, Heidelberg 2001, pp. 183–200 Zbl 1002.68148
Reference: [10] Casillas J., Cordón O., Herrera, F., Magdalena L.: Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview.In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds., Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003, pp. 3–24
Reference: [11] Casillas J., Cordón O., Herrera, F., (eds.) L. Magdalena: Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing 128).Springer–Verlag, Berlin 2003
Reference: [12] Cordón O., Herrera F.: A proposal for improving the accuracy of linguistic modeling.IEEE Trans. Fuzzy Systems 8 (2000), 335–344 10.1109/91.855921
Reference: [13] Baets B. De: Analytical solution methods for fuzzy relational equations.In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds., The Handbooks of Fuzzy Sets 7), Kluwer Academic Publishers, Boston 2000, pp. 291–340 Zbl 0970.03044, MR 1890236
Reference: [14] Baets B. De, Mesiar R.: $T$-partitions.Fuzzy Sets and Systems 97 (1998), 211–223 Zbl 0930.03070, MR 1645614, 10.1016/S0165-0114(96)00331-4
Reference: [15] Cock M. De, Bodenhofer, U., Kerre E. E.: Modelling linguistic expressions using fuzzy relations.In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 353–360
Reference: [16] Drobics M., Bodenhofer U.: Fuzzy modeling with decision trees.In: Proc. 2002 IEEE Inernat. Conference on Systems, Man and Cybernetics, Hammamet 2002
Reference: [17] Drobics M., Bodenhofer, U., Klement E. P.: FS-FOIL: An inductive learning method for extracting interpretable fuzzy descriptions.Internat. J. Approx. Reason. 32 (2003), 131–152 Zbl 1026.68111, 10.1016/S0888-613X(02)00080-4
Reference: [18] Dubois D., Prade H.: What are fuzzy rules and how to use them.Fuzzy Sets and Systems 84 (1996), 169–185 Zbl 0905.03008, MR 1416694, 10.1016/0165-0114(96)00066-8
Reference: [19] Dubois D., Prade, H., Ughetto L.: Checking the coherence and redundancy of fuzzy knowledge bases.IEEE Trans. Fuzzy Systems 5 (1997), 398–417 10.1109/91.618276
Reference: [20] Dubois D., Prade, H., Ughetto L.: Fuzzy logic, control engineering and artificial intelligence.In: Fuzzy Algorithms for Control (H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, eds., International Series in Intelligent Technologies), Kluwer Academic Publishers, Boston 1999, pp. 17–57 MR 1796620
Reference: [21] Espinosa J., Vandewalle J.: Constructing fuzzy models with linguistic integrity from numerical data – AFRELI algorithm.IEEE Trans. Fuzzy Systems 8 (2000), 591–600 10.1109/91.873582
Reference: [22] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support.Kluwer Academic Publishers, Dordrecht 1994 Zbl 0827.90002
Reference: [23] Geyer–Schulz A.: Fuzzy Rule-based Expert Systems and Genetic Machine Learning.(Studies in Fuzziness 3.) Physica–Verlag, Heidelberg 1995 Zbl 0914.68166
Reference: [24] Geyer–Schulz A.: The MIT beer distribution game revisited: Genetic machine learning and managerial behavior in a dynamic decision making experiment.In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Studies in Fuzziness and Soft Computing 8, Physica–Verlag, Heidelberg 1996, pp. 658–682
Reference: [25] Gottwald S.: Fuzzy Sets and Fuzzy Logic.Vieweg, Braunschweig 1993 Zbl 1088.03024, MR 1218623
Reference: [26] Haslinger J., Bodenhofer, U., Burger M.: Data-driven construction of Sugeno controllers: Analytical aspects and new numerical methods.In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conference, Vancouver 2001, pp. 239–244
Reference: [27] Kerre E. E., Mareš, M., Mesiar R.: On the orderings of generated fuzzy quantities.In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris 1998, pp. 250–253
Reference: [28] Klement E. P., Mesiar, R., Pap E.: Triangular Norms (Trends in Logic 8).Kluwer Academic Publishers, Dordrecht 2000 MR 1790096
Reference: [29] Kóczy L. T., Hirota K.: Ordering, distance and closeness of fuzzy sets.Fuzzy Sets and Systems 59 (1993), 281–293 MR 1258861, 10.1016/0165-0114(93)90473-U
Reference: [30] Kruse R., Gebhardt, J., Klawonn F.: Foundations of Fuzzy Systems.Wiley, New York 1994 Zbl 0843.68109
Reference: [31] Lowen R.: Convex fuzzy sets.Fuzzy Sets and Systems 3 (1980), 291–310 Zbl 0439.52001, MR 0573999
Reference: [32] Michalski R. S., Bratko, I., Kubat M.: Machine Learning and Data Mining.Wiley, Chichester 1998
Reference: [33] Muggleton S., Raedt L. De: Inductive logic programming: Theory and methods.J. Logic Program. 19/20 (1994), 629–680 Zbl 0816.68043, MR 1279936
Reference: [34] Pedrycz W., Sosnowski Z. A.: Designing decision trees with the use of fuzzy granulation.IEEE Trans. Systems Man Cybernet. A 30 (2000), 151–159 10.1109/3468.833095
Reference: [35] Quinlan J. R.: Induction of decision trees.Mach. Learning 1 (1986), 81–106 10.1007/BF00116251
Reference: [36] Quinlan J. R.: Learning logical definitions from relations.Mach. Learning 5 (1990), 239–266 10.1007/BF00117105
Reference: [37] Ralston A., Reilly E. D., (eds.) D. Hemmendinger: Encyclopedia of Computer Science.Fourth edition. Groves Dictionaries, Williston 2000 Zbl 0954.68002
Reference: [38] Ruspini E. H.: A new approach to clustering.Inform. and Control 15 (1969), 22–32 Zbl 0192.57101, 10.1016/S0019-9958(69)90591-9
Reference: [39] Setnes M., Babuška, R., Verbruggen H. B.: Rule-based modeling: Precision and transparency.IEEE Trans. Systems Man Cybernet. C 28 (1998), 165–169 10.1109/5326.661100
Reference: [40] Setnes M., Roubos H.: GA-fuzzy modeling and classification: Complexity and performance.IEEE Trans. Fuzzy Systems 8 (2000), 509–522 10.1109/91.873575
Reference: [41] Yen J., Wang, L., Gillespie C. W.: Improving the interpretability of TSK fuzzy models by combining global learning and local learning.IEEE Trans. Fuzzy Systems 6 (1998), 530–537 10.1109/91.728447
Reference: [42] Zadeh L. A.: Fuzzy sets.Inform. and Control 8 (1965), 338–353 Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [43] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning I.Inform. Sci. 8 (1975), 199–250 Zbl 0397.68071, MR 0386369
Reference: [44] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning II.Inform. Sci. 8 (1975), 301–357 Zbl 0404.68074, MR 0386370, 10.1016/0020-0255(75)90046-8
Reference: [45] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning III.Inform. Sci. 9 (1975), 43–80 Zbl 0404.68075, MR 0386371, 10.1016/0020-0255(75)90017-1
.

Files

Files Size Format View
Kybernetika_41-2005-2_9.pdf 2.510Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo