[3] Dybvig P. H., Ross S. A.: Arbitrage. In: A Dictionary of Economics, Vol. 1 (J. Eatwell, M. Milgate, and P. Newman, eds.), Macmillan Press, London 1987, pp. 100–106
[4] Eisner M. J., Olsen P.:
Duality for stochastic programs interpreted as L. P. in $L_p$-space. SIAM J. Appl. Math. 28 (1975), 779–792
DOI 10.1137/0128064 |
MR 0368742
[5] Föllmer H., Schied A.:
Stochastic Finance. An Introduction in Discrete Time. Walter de Gruyter, Berlin 2002
MR 1925197 |
Zbl 1126.91028
[6] Henclová A.: Characterization of arbitrage-free market. Bulletin Czech Econom. Soc. 10 (2003), No. 19, 109–117
[7] Hewitt E., Stromberg K.:
Real and Abstract Analysis. Third edition. Springer Verlag, Berlin 1975
MR 0367121 |
Zbl 0307.28001
[9] King A., Korf L.:
Martingale pricing measures in incomplete markets via stochastic programming duality in the dual of $L^\infty $. SPEPS, 2001–13 (available at
http://dochost.rz.hu-berlin.de/speps)
[10] Naik V.: Finite state securities market models and arbitrage. In: Handbooks in Operations Research and Management Science, Vol. 9, Finance (R. Jarrow, V. Maksimovic, and W. Ziemba, eds.), Elsevier, Amsterdam 1995, pp. 31–64
[11] Pennanen T., King A.:
Arbitrage pricing of American contingent claims in incomplete markets – a convex optimization approach. SPEPS, 2004–14 (available at
http://dochost.rz.hu-berlin.de/speps)
[12] Pliska S. R.: Introduction to Mathematical Finance, Discrete Time Models. Blackwell Publishers, Oxford 1999
[13] Rockafellar R. T.:
Conjugate Duality and Optimization. SIAM/CBMS monograph series No. 16, SIAM Publications, Philadelphia 1974
MR 0373611 |
Zbl 0296.90036
[14] Rockafellar R. T., Wets R. J.-B.:
Nonanticipativity and $Ł^1$-martingales in stochastic optimization problems. Math. Programming Stud. 6 (1976), 170–187
DOI 10.1007/BFb0120750 |
MR 0462590
[17] Rockafellar R. T., Wets R. J.-B.:
Stochastic convex programming: Relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14 (1976), 574–589
DOI 10.1137/0314038 |
MR 0408823 |
Zbl 0346.90058