[3] Axler S., Bourdon, P., Ramey W.:
Harmonic Function Theory. (Graduate Texts in Mathematics 137.) Springer–Verlag, New York 2001
MR 1805196 |
Zbl 0959.31001
[4] Baets B. De:
Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Chapter 6, Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291–340
MR 1890236 |
Zbl 0970.03044
[5] Baets B. De, Meyer H. De:
Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity. Fuzzy Sets and Systems 152 (2005), 249–270
MR 2138509 |
Zbl 1114.91031
[6] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cycle evaluation of transitivity of reciprocal relations. Soc. Choice Welfare. To appear
[7] Schuymer B. De, Meyer, H. De, Baets B. De: On some forms of cycle-transitivity and their relation to commutative copulas. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 178–182
[9] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106
MR 1936383 |
Zbl 1039.03015
[10] Denneberg D.:
Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994
MR 1320048 |
Zbl 0968.28009
[11] Durante F.: What is a semicopula? In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 51–56
[12] Durante F.:
A new class of symmetric bivariate copulas. Preprint n. 19, Dipartimento di Matematica E. De Giorgi, Lecce, 2005
MR 2311801
[14] Durante F., Quesada-Molina J. J., Sempi C.:
A generalization of the Archimedean class of bivariate copulas. Ann. Inst. Statist. Math. (2006), to appear
MR 2388803
[15] Durante F., Sempi C.:
Semicopulæ. Kybernetika 41 (2005), 315–328
MR 2181421
[16] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.:
A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205
DOI 10.1006/jmva.1998.1809 |
MR 1703371
[17] Ricci R. Ghiselli, Mesiar R.: $k$-Lipschitz strict triangular norms. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 1307–1312
[18] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[19] Kolmogorov A. N.:
Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer–Verlag, Berlin 1933. Reprinted in: Foundations of the Theory of Probability. Chelsea, Bronxm NY 1950
MR 0494348 |
Zbl 0007.21601
[20] Mesiarová A.: $k$-Lipschitz aggregation operators. In: Proc. AGOP – Summer School on Aggregation Operators, Lugano 2005, pp. 89–92
[21] Mesiarová A.: Triangular norms and $k$-Lipschitz property. In: Proc. EUSFLAT–LFA Conference, Barcelona 2005, pp. 922–926
[24] Nelsen R. B.:
Copulas and quasi-copulas: an introduction to their properties and applications. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413
MR 2165243 |
Zbl 1079.60021
[26] Scarsini M.:
Copulæ of capacities on product spaces. In: Distribution Functions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume 28), Hayward 1996, pp. 307–318
MR 1485540
[27] Schweizer B., Sklar A.:
Probabilistic Metric Spaces. North Holland, New York 1983. 2nd edition: Dover Publications, Mineola, New York 2005
MR 0790314 |
Zbl 0546.60010
[28] Stromberg K. R.:
An Introduction to Classical Real Analysis. Chapman & Hall, London 1981
MR 0604364 |
Zbl 0454.26001