[2] Bertsekas D. P.:
Dynamic Programming: Deterministic and Stochastic Models. Prentice-Hall, Englewood Cliffs, New Jersey 1987
MR 0896902 |
Zbl 0649.93001
[3] Cruz-Suárez D., Montes-de-Oca, R., Salem-Silva F.:
Conditions for the uniqueness of optimal policies of discounted Markov decision processes. Math. Methods Oper. Res. 60 (2004), 415–436
DOI 10.1007/s001860400372 |
MR 2106092 |
Zbl 1104.90053
[4] Fuente A. De la:
Mathematical Methods and Models for Economists. Cambridge University Press, New York 2000
MR 1735968 |
Zbl 0943.91001
[7] Heer B., Maußner A.:
Dynamic General Equilibrium Modelling: Computational Method and Application. Springer-Verlag, Berlin 2005
MR 2378171
[8] Hernández-Lerma O.:
Adaptive Markov Control Processes. Springer-Verlag, New York 1989
MR 0995463
[9] Hernández-Lerma O., Lasserre J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996
MR 1363487 |
Zbl 0840.93001
[11] Levhari D., Srinivasan T. N.:
Optimal savings under uncertainty. Rev. Econom. Stud. 36 (1969), 153–164
DOI 10.2307/2296834
[12] Mirman L. J.:
Dynamic models of fishing: a heuristic approach. In: Control Theory in Mathematical Economics (Pan-Tai Liu and J. G. Sutinen, eds.), Marcel Dekker, New York 1979, pp. 39–73
Zbl 0432.90024
[14] Santos M. S.: Numerical solution of dynamic economic models. In: Handbook of Macroeconomic, Volume I (J. B. Taylor and M. Woodford, eds.), North Holland, Amsterdam 1999, pp. 311–386
[15] Stokey N. L., Lucas R. E.:
Recursive Methods in Economic Dynamics. Harvard University Press, Cambridge, Mass. 1989
MR 1105087 |
Zbl 0774.90018