Previous |  Up |  Next

Article

Keywords:
properness; linear systems; implicit systems
Summary:
In this paper, we revisit the structural concept of properness. We distinguish between the properness of the whole system, here called internal properness, and the properness of the “observable part” of the system. We give geometric characterizations for this last properness concept, namely external properness.
References:
[1] Aplevich J. D.: Time-domain input-output Representations of linear systems. Automatica 17 (1981), 3, 509–522 MR 0628500 | Zbl 0463.93031
[2] Aplevich J. D.: Implicit Linear Systems. (Lecture Notes in Control and Information Sciences 152.) Springer–Verlag, Berlin 1991 MR 1100921 | Zbl 0764.93001
[3] Armentano V. A.: The pencil $\left( sE-A\right)$ and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24 (1986), 4, 616–638 MR 0846371
[4] Bernhard P.: On singular implicit dynamical systems. SIAM J. Control Optim. 20 (1982), 5, 612–633 MR 0667644
[5] Bonilla M., Malabre M.: Geometric minimization under external equivalence for implicit descriptions. Automatica 31 (1995), 6, 897–901 MR 1337338 | Zbl 0831.93010
[6] Bonilla M., Malabre M.: Structural matrix minimization algorithm for implicit descriptions. Automatica 33 (1997), 4, 705–710 MR 1448965 | Zbl 0913.93012
[7] Bonilla M., Malabre, M., Fonseca M.: On the approximation of non–proper control laws. Internat. J. Control 68 (1997), 4, 775–796 MR 1689656 | Zbl 0897.93053
[8] Bonilla M., Malabre M.: More about non square implicit descriptions for modelling and control. In: Proc. 39th IEEE Conference on Decision and Control 2000, pp. 3642–3647
[9] Bonilla M., Malabre M.: On the control of linear systems having internal variations. Automatica 39 (2003), 11, 1989–1996 MR 2142835
[10] Campbell S. L.: Singular Systems of Differential Equations II. Pitman, New York 1982 MR 0665426 | Zbl 0482.34008
[11] Cobb D.: Controllability, Observability and Duality in Singular Systems. IEEE Trans. Automat. Control AC-29 (1984), 12, 1076–1082 MR 0771396
[12] Dai L.: Singular Control Systems. (Lecture Notes in Control and Information Sciences 118.) Springer–Verlag, Berlin 1989 MR 0986970 | Zbl 0669.93034
[13] Frankowska H.: On the controllability and observability of implicit systems. Systems Control Lett. 14 (1990), 219–225 MR 1049356
[14] Gantmacher F. R.: The Theory of Matrices. Vol. II. Chelsea, New York 1977 Zbl 0927.15002
[15] Kučera V., Zagalak P.: Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 5, 653–658 MR 0966689
[16] Kuijper M.: First-order Representations of Linear Systems. Ph.D. Thesis. Katholieke Universiteit Brabant, Amsterdam 1992 Zbl 0863.93001
[17] Kuijper M.: Descriptor representations without direct feedthrough term. Automatica 28 (1992), 633–637 MR 1166034 | Zbl 0766.93026
[18] Lewis F. L.: A survey of linear singular systems. Circuits Systems Signal Process. 5 (1986), 1, 3–36 MR 0893725 | Zbl 0613.93029
[19] Lewis F. L.: A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28 (1992), 1, 119–137 MR 1144115 | Zbl 0745.93033
[20] Loiseau J. J.: Some geometric considerations about the Kronecker normal form. Internat. J. Control 42 (1985), 6, 1411–1431 MR 0818345 | Zbl 0609.93014
[21] Malabre M.: Generalized linear systems, geometric and structural approaches. Linear Algebra Appl. 122/123/124 (1989), 591–621 MR 1020003 | Zbl 0679.93048
[22] Malabre M.: More geometry about singular systems. In: Proc. 26th IEEE Conference on Decision and Control 1987, pp. 1138–1139
[23] Özçaldiran K.: A geometric characterization of the reachable and controllable subspaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 1, 37–48 MR 0893726
[24] Pacheco P., Bonilla, M., Malabre M.: Proper exponential approximation of non proper compensators: The MIMO case. In: Proc. 42nd IEEE Conference on Decision and Control 2003, pp. 110–115
[25] Polderman J. W., Willems J. C.: Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer–Verlag, New York 1998 MR 1480665 | Zbl 0940.93002
[26] Rosenbrock H. H.: State-Space and Multivariable Theory. Nelson, London 1970 MR 0325201 | Zbl 0246.93010
[27] Schwartz L.: Théorie des Distributions. Herman, Paris 1966 MR 0209834 | Zbl 0962.46025
[28] Verghese G. C.: Further notes on singular descriptions. JACC TA4 (1981), Charlottesville
[29] Verghese G. C., Lévy B. C., Kailath T.: A generalized state-space for singular systems. IEEE Trans. Automat. Control 26 (1981), 4, 811–831 MR 0635842
[30] Willems J. C.: Input-output and state space representations of finite-dimensional linear time-invariant systems. Linear Algebra Appl. 50 (1983), 81–608 MR 0699576 | Zbl 0507.93017
[31] Wong K. T.: The eigenvalue problem $\lambda Tx+Sx. $ J. Differential Equations 1 (1974), 270–281 MR 0349711 | Zbl 0327.15015
[32] Zagalak P., Kučera V.: Fundamental theorem of state feedback: The case of infinite poles. Kybernetika 27 (1991), 1, 1–11 MR 1099510 | Zbl 0725.93049
Partner of
EuDML logo