[1] BARBIERI G.-WEBER H.:
Measures on clans and on MV-algebras. In: Handbook of Measure Theorу, vol II (E. Pap, ed.), Elsevier, Amsterdam, 2002, pp. 911-945 (Chap. 22).
MR 1954632 |
Zbl 1019.28009
[2] BUTNARIU D.-KLEMENT E.:
Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111-143.
MR 1135265 |
Zbl 0751.60003
[3] CHANG C. C.:
Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490.
MR 0094302 |
Zbl 0084.00704
[4] CHANG C. C.:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80.
MR 0122718 |
Zbl 0093.01104
[5] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.:
Algebraic Foundation of Many-Valued Reasoning. Kluwer Acad. PubL, Dordrecht, 2000.
MR 1786097
[7] DVUREČENSKIJ A.:
Loomis-Sikorski theorem for $\sigma$-complete $MV$-algebras and \ell$-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261-277.
MR 1738040 |
Zbl 0958.06006
[8] DVUREČENSKIJ A.:
MV-observables and MV-algebras. J. Math. Anal. Appl. 259 (2001), 413-428.
MR 1842068 |
Zbl 0992.03081
[9] DVUREČENSKIJ A.-PULMANNOVÁ S.:
New Trends in Quantum Structures. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000.
MR 1861369 |
Zbl 0987.81005
[10] DVUREČENSKIJ A.-PULMANNOVÁ S.:
Conditional probability on a-MV algebras. Fuzzy Sets and Systems 155 (2005), 102-118.
MR 2206657
[11] FOULIS D. J.-BENNETT M. K.:
Effect algebras and unsharp quantum logic. Found. Phys. 24 (1994), 1325-1346.
MR 1304942
[13] FOULIS D. J.:
Compressions on partially ordered abelian groups. Proc. Amer. Math.Soc. 132 (2004), 3581-3587.
MR 2084080 |
Zbl 1063.47003
[14] FOULIS D. J.:
Spectral resolution in a Rickart comgroup. Rep. Math. Phys. 54 (2004), 319-340.
MR 2107868 |
Zbl 1161.81310
[15] FOULIS D. J.:
Compressible groups with general comparability. Math. Slovaca. 55 (2005), 409-429.
MR 2181781 |
Zbl 1114.06012
[16] FOULIS D. J.:
MV and Heyting effect algebras. Found. Phys. 30 (2000), 1687-1706.
MR 1810197
[17] GIUNTINI R.-GREULING H.:
Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945.
MR 1013913
[18] GOODEARL K. R.:
Partially Ordered Abelian Groups with Interpolation. Math. Surveys Monogr. 20, Amer. Math. Soc, Providence, RI, 1986.
MR 0845783 |
Zbl 0589.06008
[19] GUDDER S. P.:
S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915-923.
MR 1624277 |
Zbl 0932.03072
[22] JENČA G.-PULMANNOVÁ S.:
Orthocomplete effect algebras. Proc Amer. Math.Soc 131 (2003), 2663-2671.
MR 1974321 |
Zbl 1019.03046
[23] JENČA G.-PULMANNOVÁ S.:
Ideals and quotients in lattice ordered effect algebras. Soft Comput. 5 (2001), 376-380.
Zbl 1004.06009
[24] JENČA G.-RIEČANOVÁ Z.: On sharp elements in lattice ordered effect algebras. Busefal 80 (1999), 24-29.
[26] MUNDICI D.:
Interpretations of $AF$ $C^\ast$-algebras in Lukasziewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
MR 0819173
[27] MUNDICI D.:
Tensor products and the Loomis-Sikorski theorem for MV-algebras. Adv. in Appl. Math. 22 (1999), 227-248.
MR 1659410 |
Zbl 0926.06004
[28] PULMANNOVÁ S.:
A spectral theorem for a-MV algebras. Kybernetika 41 (2005), 361-374.
MR 2181424
[29] PULMANNOVÁ S.:
Spectral resolutions in Dedekind $\sigma$-complete $\ell$-groups. J. Math. Anal. Appl. 309 (2005), 322-335.
MR 2154046 |
Zbl 1072.06014
[31] PTÁK P.-PULMANNOVÁ S.:
Orthomodular Structures as Quantum Logics. Kluwer Acad. Publ./VEDA, Dordrecht/Bratislava, 1991.
MR 1176314 |
Zbl 0743.03039
[32] RIEČAN B.-NEUBRUNN T.:
Integral, Measure and Ordering. Kluwer Acad. Publ./ Ister Science, Dordrecht/Bratislava, 1997.
MR 1489521 |
Zbl 0916.28001
[33] RIEČANOVÁ Z.:
Generalization of blocks for D-lattices and lattice ordered effect algebras. Internat. J. Theoret. Phys. 39 (2000), 231-237.
MR 1762594 |
Zbl 0968.81003
[34] RIEČANOVÁ Z.:
Smearing of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511-1524.
MR 1932844