Previous |  Up |  Next

Article

References:
[1] ABBOTT J. C.: Semi-boolean algebra. Mat. Vesnik 4 (1967), 177-198. MR 0239957 | Zbl 0153.02704
[2] BAHLS R.-COLE J.-GALATOS N.-JIPSEN R.-TSINAKIS C.: Cancellative residuated lattices. Algebra Universalis 50 (2003), 83-106. MR 2026830 | Zbl 1092.06012
[3] CHAJDA I.-HALAŠ R.-KÜHR J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71 (2005), 19-33. MR 2160352 | Zbl 1099.06006
[4] CHAJDA I.-HALAŠ R.-KÜHR J.: Implication in MV-algebras. Algebra Universalis 52 (2004), 377-382. MR 2120523 | Zbl 1097.06011
[5] CHANG C. C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302
[6] CHANG C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74-80. MR 0122718 | Zbl 0093.01104
[7] CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ, Dordrecht-Boston-London, 2000. MR 1786097 | Zbl 0937.06009
[8] GALATOS N.-TSINAKIS C.: Generalized MV-algebras. J. Algebra 283 (2005), 254-291. MR 2102083 | Zbl 1063.06008
[9] GEORGESCU C.-IORGULESCU A.: Pseudo-MV algebras. Mult.-Valued Log. 6 (2001), 95-135. MR 1817439 | Zbl 1014.06008
[10] JEŽEK J.-QUACKENBUSH R.: Directoids: algebraic models of up-directed sets. Algebra Universalis 27 (1990), 49-69. MR 1025835 | Zbl 0699.08002
[11] KARÁSEK J.: Rotations of $\lambda$-lattices. Math. Bohem. 121 (1996), 293-300. MR 1419883 | Zbl 0879.06001
[12] MANGANI, R: Su certe algebre connesse con logiche a piú valori. Boll. Unione Mat. Ital. Ser. IV. 8 (1973), 68-78. MR 0337491 | Zbl 0274.02007
[13] MUNDICI D.: Interpretation of $AF$ $C^\ast$ -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173 | Zbl 0597.46059
[14] RACHŮNEK J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255-273. MR 1905434 | Zbl 1012.06012
[15] SNÁŠEL V.: $\lambda$-lattices. Ph.D. Thesis, Masaryk Univ., Brno, 1991.
[16] SNÁŠEL V.: $\lambda$-lattices. Math. Bohem. 122 (1997), 267-272. MR 1600648 | Zbl 0897.06003
Partner of
EuDML logo