[1] Czogała A. : 
Równoważność Hilberta ciał globalnych.  volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. 
MR 1852938[4] Koprowski P. : 
Integral equivalence of real algebraic function fields.  Tatra Mt. Math. Publ., 34:53–61, 2005. 
MR 2206911 | 
Zbl 1150.11420[5] Lam T. Y. : 
Introduction to quadratic forms over fields.  volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. 
MR 2104929 | 
Zbl 1068.11023[6] Perlis R., Szymiczek K., Conner P. E., Litherland R. : 
Matching Witts with global fields.  In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. 
MR 1260721[8] Szymiczek K. : 
Witt equivalence of global fields.  Comm. Algebra, 19(4):1125–1149, 1991. 
MR 1102331[9] Szymiczek K. : 
Hilbert-symbol equivalence of number fields.  Tatra Mt. Math. Publ., 11:7–16, 1997. 
MR 1475500 | 
Zbl 0978.11012[10] Szymiczek K. : 
A characterization of tame Hilbert-symbol equivalence.  Acta Math. Inform. Univ. Ostraviensis, 6(1):191–201, 1998. 
MR 1822530 | 
Zbl 1024.11022