[2] Adamchik, V., Wagon, S.: 
A simple formula for $\pi $. Amer. Math. Monthly 104 (1997), 852–855. 
MR 1479991 | 
Zbl 0886.11073[3] Bailey, D. H.: A polynomial time, numerically stable integer relation algorithm. NAS Technical Report Server (RNR-91-032, December 1991).
[4] Bailey, D. H., Borwein, P. B., Plouffe, S.: 
On the rapid computation of various polylogarithmic constants. Math. Comp. 66 (1997), 903–913. 
MR 1415794 | 
Zbl 0879.11073[5] Bailey, D. H., Ferguson, H. R. P.: 
Numerical results on relations between fundamental constants using a new algorithm. Math. Comp. 53 (1989), 649–656 (*). 
MR 0979934 | 
Zbl 0687.10002[6] Bailey, D. H., Plouffe, S.: 
Recognizing numerical constants. Organic mathematics (Burnaby, BC, 1995), CMS Conf. Proc. 20 (1977), Amer. Math. Soc., Providence, RI, 73–88 (preprint z r. 1995). 
MR 1483914[7] Bailey, D. H., Borwein, J. M., Borwein, P. B., Plouffe, S.: 
The quest for Pi. Math. Intelligencer 19 (1997), no. 1, 50–57. 
MR 1439159 | 
Zbl 0878.11002[8] Beckmann, P.: Historie čísla $\pi $. Academia, Praha 1998 (překlad 5. vydání z r. 1982).
[10] Berggren, L., Borwein, J. M., Borwein, P. B.: 
$\pi $: A source book. Springer, New York 1997. 
MR 1467531 | 
Zbl 0876.11001[11] Borwein, J. M., Borwein, P. B.: 
The arithmetic-geometric mean and fast computation of elementary functions. SIAM Rev. 26 (1984), 351–366 (*). 
MR 0750454 | 
Zbl 0557.65009[12] Borwein, J. M., Borwein, P. B.: 
Pi and the AGM: A study in analytic number theory and computational complexity. John Wiley & Sons, New York 1987. 
MR 0877728 | 
Zbl 0611.10001[13] Borwein, J. M., Borwein, P. B.: Ramanujan and Pi. Science and applications; Supercomputing 88, Vol. II (1988), 112–117 (*).
[14] Borwein, J. M., Borwein, P. B., Dilcher, K.: 
$\pi $, Euler numbers and asymptotic expansion. Amer. Math. Monthly 96 (1989), 681–687 (*). 
MR 1019148[15] Borwein, J. M., Borwein, P. B., Girgensohn, R., Parnes, S.: 
Making sense of experimental mathematics. Math. Intelligencer 18 (1996), no. 4, 12–18 (preprint s názvem “Experimental mathematics: a discussion” z r. 1995 je k dispozici na serveru CECM, viz [23]). 
MR 1413248 | 
Zbl 0874.00027[16] Borwein, J. M., Borwein, P. B., Bailey, D. H.: 
Ramanujan, modular equations, and approximations to Pi or How to compute one bilion digits of Pi. Amer. Math. Monthly 96 (1989), 201–219 (*). 
MR 0991866[17] Brent, R. P.: 
Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (1976), 242–251 (*). 
MR 0395314 | 
Zbl 0324.65018[19] Goldstine, H. H.: 
A history of numerical analysis from the 16th through the 19th century. Springer, New York 1977. 
MR 0484905 | 
Zbl 0402.01005[20] Hančl, J.: 
Two proofs of transcendency of $\pi $ and e. Czech. Math. Journal 35 (1985), 543–549. 
MR 0809040[21] Iwamoto, Y.: 
A proof that $\pi ^2$ is irrational. J. Osaka Inst. Sci. Tech. 1 (1949), 147–148. 
MR 0037863[22] Jarník, V.: Diferenciální počet I. Academia, Praha 1984 (6. vydání).
[24] Kořínek, V.: 
Základy algebry. NČSAV, Praha 1953. 
MR 0075914[25] Knopp, K.: 
Theorie und Anwendungen der unendlichen Reihen. Springer, Berlin 1924. 
MR 0028430[26] Niven, I.: 
A simple proof that $\pi $ is irrational. Bull. Amer. Math. Soc. 53 (1947), 509 (*). 
MR 0021013 | 
Zbl 0037.31404[27] Novák, B.: O sedmém Hilbertově problému. Pokroky MFA 17 (1972), 245–256.
[28] Novák, B.: 
A remark to a paper of J. F. Koksma. Nieuw Arch. voor Wiskunde 23 (1975), 195–197. 
MR 0406941[29] Novák, B.: Vybrané kapitoly z teorie čísel. SPN, Praha 1972.
[31] Rabinowitz, S. D., Wagon, S.: 
A spigot algorithm for the digits of $\pi $. Amer. Math. Monthly 103 (1995), 195–203. 
MR 1317842 | 
Zbl 0853.11102[32] Ramanujan, S.: Modular equations and approximations to $\pi $. Quart. J. Math. 45 (1914), 350–372.
[33] Salamin, E.: 
Computation of $\pi $ using arithmetic-geometric mean. Math. Comp. 30 (1976), 565–570 (*). 
MR 0404124 | 
Zbl 0345.10003[34] Taylor, S. J.: Pravidelnost náhodnosti. Pokroky MFA 25 (1980), 28–34 (překlad).
[35] Veselý, J.: $\pi $ aneb 3,14159.. Učitel matematiky 3 (15), 4 (16) (1995), 1–10 a 1–13.
[36] Veselý, J.: Matematická analýza pro učitele. Matfyzpress, vydavatelství MFF UK, Praha 1997.
[39] Borwein, J. M.: 
Brouwer-Heyting sequence converge. Math. Intelligencer 20 (1998), no. 1, 14–15. 
MR 1601815