Article
Keywords:
Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor
Summary:
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
References:
                        
[1] Akbar-Zadeh, H.: 
Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. (6) 74 (1988), 281–322. 
MR 1052466 | 
Zbl 0686.53020[2] Chen, B., Zhao, L. L.: 
Randers metrics of sectional flag curvature. Houston J. Math., to appear. 
MR 2610781[4] Chern, S. S.: 
Local equivalence and Euclidean connections in Finsler spaces. Sci. Rep. Nat. Tsing Hua Univ. Ser. A5 (1948), 95–121, or Selected Papers, II, 194-212, Springer 1989. 
MR 0031812 | 
Zbl 0200.00004[5] Chern, S. S., Shen, Z.: 
Riemannian-Finsler geometry. World Sci., Singapore, 2005. 
MR 2169595[7] Numata, S.: 
On Landsberg spaces of scalar curvature. J. Korean Math. Soc. 12 (1975), 97–100. 
MR 0402643 | 
Zbl 0314.53017