[1] Ainsworth, M., Oden, J. T.:
A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons (2000).
MR 1885308 |
Zbl 1008.65076
[4] Babuška, I., Strouboulis, T.:
The Finite Element Method and Its Reliability. Oxford University Press New York (2001).
MR 1857191
[5] Bangerth, W., Rannacher, R.:
Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser Basel (2003).
MR 1960405
[6] Becker, R., Rannacher, R.:
A feed-back approach to error control in finite element methods: Basic approach and examples. East-West J. Numer. Math. 4 (1996), 237-264.
MR 1430239
[7] Blaheta, R.: Multilevel Newton methods for nonlinear problems with applications to elasticity. Copernicus 940820. Technical report.
[9] Carstensen, C., Funken, S. A.:
Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8 (2000), 153-175.
MR 1807259 |
Zbl 0973.65091
[10] Ciarlet, Ph. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications Vol. 4. North-Holland Publishing Amsterdam-New York-Oxford (1978).
MR 0520174
[13] Faragó, I., Karátson, J.:
Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications. Advances in Computation, Vol. 11. NOVA Science Publishers New York (2002).
MR 2106499
[14] Frolov, M. E.:
On efficiency of the dual majorant method for the quality estimation of approximate solutions of fourth-order elliptic boundary value problems. Russ. J. Numer. Anal. Math. Model. 19 (2004), 407-418.
DOI 10.1515/1569398042395970 |
MR 2107584 |
Zbl 1064.65129
[16] Grisvard, P.:
Elliptic Problems in Nonsmooth Domains. Pitman Boston-London-Melbourne (1985).
MR 0775683 |
Zbl 0695.35060
[17] Han, W.:
A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics Vol. 8. Springer New York (2005).
MR 2101057
[18] Hannukainen, A.: Finite Element Methods for Maxwell's Equations. Master Thesis. Institute of Mathematics, Helsinki University of Technology Helsinki (2007).
[19] Hannukainen, A., Korotov, S.:
Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems. Far East J. Appl. Math. 21 (2005), 289-304.
MR 2216003 |
Zbl 1092.65097
[20] Hlaváček, I., Chleboun, J., Babuška, I.:
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier (2004).
MR 2285091 |
Zbl 1116.74003
[21] Hlaváček, I., Křížek, M.:
On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition; II. Boundary conditions of Newton's or Neumann's type; III. Optimal interior estimates. Apl. Mat. 32 (1987), 131-154; 200-213; 276-289.
MR 0885758
[23] Kachanov, L. M.:
Foundations of the Theory of Plasticity. North-Holland Amstedram (1971).
MR 0483881 |
Zbl 0231.73015
[25] Karátson, J., Korotov, S.:
Discrete maximum principles for FEM solutions of some nonlinear elliptic interface problems. Int. J. Numer. Anal. Model. 6 (2009), 1-16.
MR 2574894 |
Zbl 1163.65076
[26] Karátson, J., Korotov, S.: Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems. Helsinki University of Technology, Institute of Mathematics, Research Report A527; July 2007.
[30] Křížek, M., Neittaanmäki, P.:
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers Dordrecht (1996).
MR 1431889
[31] Kuzmin, D., Hannukainen, A., Korotov, S.:
A new a posteriori error estimate for convection-reaction-diffusion problems. J. Comput. Appl. Math. 218 (2008), 70-78.
DOI 10.1016/j.cam.2007.04.033 |
MR 2431599
[32] Maz'ja, V. G.:
Sobolev Spaces. Springer Berlin (1985).
Zbl 0692.46023
[33] Miersemann, E.:
Zur Regularität verallgemeinerter Lösungen von quasilinearen elliptischen Differentialgleichungen zweiter Ordnung in Gebieten mit Ecken. Z. Anal. Anw. 1 (1982), 59-71.
DOI 10.4171/ZAA/29 |
MR 0719164 |
Zbl 0518.35011
[34] Mikhlin, S. G.:
The Numerical Performance of Variational Methods. Walters Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics. Walters Noordhoff Publishing Groningen (1971).
MR 0278506
[35] Mikhlin, S. G.:
Constants in Some Inequalities of Analysis. A Wiley-Interscience Publication. John Wiley & Sons Chichester (1986).
MR 0853915
[37] Nečas, J.:
Les méthodes directes en théorie des équations elliptiques. Academia Prague (1967).
MR 0227584
[38] Nečas, J., Hlaváček, I.:
Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Studies in Applied Mechanics 3. Elsevier Scientific Publishing Amsterdam-New York (1980).
MR 0600655
[39] Neittaanmäki, P., Repin, S.:
A posteriori error estimates for boundary-value problems related to the biharmonic operator. East-West J. Numer. Math. 9 (2001), 157-178.
MR 1836871 |
Zbl 0986.65101
[40] Neittaanmäki, P., Repin, S.:
Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Studies in Mathematics and Its Applications 33. Elsevier Science B.V. Amsterdam (2004).
MR 2095603
[43] Repin, S.:
A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauchn. Semin. St. Petersburg, Otdel. Mat. Inst. Steklov (POMI) 243 (1997), 201-214.
MR 1629741 |
Zbl 0904.65064
[47] Rüter, M., Korotov, S., Steenbock, C.:
Goal-oriented error estimates based on different FE-spaces for the primal and the dual problem with applications to fracture mechanics. Comput. Mech. 39 (2007), 787-797.
DOI 10.1007/s00466-006-0069-2 |
MR 2298591 |
Zbl 1178.74172
[49] Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons-Teubner Chichester-Stuttgart (1996).
[51] Waterhouse, W. C.:
The absolute-value estimate for symmetric multilinear forms. Linear Algebra Appl. 128 (1990), 97-105.
MR 1049074 |
Zbl 0699.15012
[52] Zeidler, E.:
Nonlinear Functional Analysis and Its Applications. Springer New York (1986).
MR 0816732 |
Zbl 0583.47050