Previous |  Up |  Next

Article

Keywords:
$q$-integers; $q$-binomial coefficients; $q$-Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates
Summary:
Due to the fact that in the case $q>1$ the $q$-Bernstein polynomials are no longer positive linear operators on $C[0,1],$ the study of their convergence properties turns out to be essentially more difficult than that for $q<1.$ In this paper, new saturation theorems related to the convergence of $q$-Bernstein polynomials in the case $q>1$ are proved.
References:
[1] Cao, J.-D.: A generalization of the Bernstein polynomials. J. Math. Anal. Appl. 209 (1997), 140-146. DOI 10.1006/jmaa.1997.5349 | MR 1444517 | Zbl 0879.41010
[2] Cao, J.-D., Gonska, H., Kacsó, D.: On the impossibility of certain lower estimates for sequences of linear operators. Math. Balkanica 19 (2005), 39-58. MR 2119784
[3] Cheney, E. W., Sharma, A.: On a generalization of Bernstein polynomials. Riv. Mat. Univ. Parma 5 (1964), 77-84. MR 0198074 | Zbl 0146.08202
[4] Cooper, S., Waldron, S.: The eigenstructure of the Bernstein operator. J. Approx. Theory 105 (2000), 133-165. DOI 10.1006/jath.2000.3464 | MR 1768528 | Zbl 0963.41006
[5] Derriennic, M.-M.: Modified Bernstein polynomials and Jacobi polynomials in $q$-calculus. Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 76 (2005), 269-290. MR 2178441 | Zbl 1142.41002
[6] Gonska, H.: The rate of convergence of bounded linear processes on spaces of continuous functions. Automat. Comput. Appl. Math. 7 (1999), 38-97. MR 1886377
[7] Gupta, V.: Some approximation properties of $q$-Durrmeyer operators. Appl. Math. Comput. 197 (2008), 172-178. DOI 10.1016/j.amc.2007.07.056 | MR 2396302 | Zbl 1142.41008
[8] Gupta, V., Wang, H.: The rate of convergence of $q$-Durrmeyer operators for $0. Math. Meth. Appl. Sci. (2008). MR 2447215
[9] Habib, A., Umar, S.: On generalized Bernstein polynomials. Indian J. Pure Appl. Math. 11 (1980), 177-189. MR 0571065 | Zbl 0443.41015
[10] Il'inskii, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials. J. Approx. Theory 116 (2002), 100-112. DOI 10.1006/jath.2001.3657 | MR 1909014 | Zbl 0999.41007
[11] Lorentz, G. G.: Bernstein Polynomials. Chelsea, New York (1986). MR 0864976 | Zbl 0989.41504
[12] Lupaş, A.: A $q$-analogue of the Bernstein operator. University of Cluj-Napoca, Seminar on numerical and statistical calculus, No. 9 (1987).
[13] Novikov, I. Ya.: Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets. Mathematical Notes 71 (2002), 217-229. DOI 10.1023/A:1013959231555 | MR 1900797 | Zbl 1034.42040
[14] Ostrovska, S.: $q$-Bernstein polynomials and their iterates. J. Approx. Theory 123 (2003), 232-255. DOI 10.1016/S0021-9045(03)00104-7 | MR 1990098 | Zbl 1093.41013
[15] Ostrovska, S.: On the $q$-Bernstein polynomials. Advanced Studies in Contemporary Mathematics 11 (2005), 193-204. MR 2169894 | Zbl 1116.41013
[16] Ostrovska, S.: On the improvement of analytic properties under the limit $q$-Bernstein operator. J. Approx. Theory 138 (2006), 37-53. DOI 10.1016/j.jat.2005.09.015 | MR 2197601 | Zbl 1098.41006
[17] Petrone, S.: Random Bernstein polynomials. Scan. J. Statist. 26 (1999), 373-393. DOI 10.1111/1467-9469.00155 | MR 1712051 | Zbl 0939.62046
[18] Videnskii, V. S.: On some classes of $q$-parametric positive operators. Operator Theory, Advances and Applications, Vol. 158 (2005), 213-222. DOI 10.1007/3-7643-7340-7_15 | MR 2147598
[19] Videnskii, V. S.: On the polynomials with respect to the generalized Bernstein basis. In: Problems of modern mathematics and mathematical education, Hertzen readings. St.-Petersburg (2005), 130-134 Russian.
[20] Wang, H.: Korovkin-type theorem and application. J. Approx. Theory 132 (2005), 258-264. DOI 10.1016/j.jat.2004.12.010 | MR 2118520 | Zbl 1118.41015
[21] Wang, H.: Voronovskaya type formulas and saturation of convergence for $q$-Bernstein polynomials for $0. J. Approx. Theory 145 (2007), 182-195. DOI 10.1016/j.jat.2006.08.005 | MR 2312464 | Zbl 1112.41016
[22] Wang, H., Wu, X. Z.: Saturation of convergence for $q$-Bernstein polynomials in the case $q\geq 1$. J. Math. Anal.Appl. 337 (2008), 744-750. DOI 10.1016/j.jmaa.2007.04.014 | MR 2356108
[23] Wang, H.: Properties of convergence for $\omega,q$-Bernstein polynomials. J. Math. Anal. Appl. 340 (2008), 1096-1108. DOI 10.1016/j.jmaa.2007.09.004 | MR 2390913 | Zbl 1144.41004
Partner of
EuDML logo