[2] Cao, J.-D., Gonska, H., Kacsó, D.:
On the impossibility of certain lower estimates for sequences of linear operators. Math. Balkanica 19 (2005), 39-58.
MR 2119784
[3] Cheney, E. W., Sharma, A.:
On a generalization of Bernstein polynomials. Riv. Mat. Univ. Parma 5 (1964), 77-84.
MR 0198074 |
Zbl 0146.08202
[5] Derriennic, M.-M.:
Modified Bernstein polynomials and Jacobi polynomials in $q$-calculus. Rendiconti Del Circolo Matematico Di Palermo, Serie II, Suppl. 76 (2005), 269-290.
MR 2178441 |
Zbl 1142.41002
[6] Gonska, H.:
The rate of convergence of bounded linear processes on spaces of continuous functions. Automat. Comput. Appl. Math. 7 (1999), 38-97.
MR 1886377
[8] Gupta, V., Wang, H.:
The rate of convergence of $q$-Durrmeyer operators for $0. Math. Meth. Appl. Sci. (2008). MR 2447215
[9] Habib, A., Umar, S.:
On generalized Bernstein polynomials. Indian J. Pure Appl. Math. 11 (1980), 177-189.
MR 0571065 |
Zbl 0443.41015
[12] Lupaş, A.: A $q$-analogue of the Bernstein operator. University of Cluj-Napoca, Seminar on numerical and statistical calculus, No. 9 (1987).
[15] Ostrovska, S.:
On the $q$-Bernstein polynomials. Advanced Studies in Contemporary Mathematics 11 (2005), 193-204.
MR 2169894 |
Zbl 1116.41013
[19] Videnskii, V. S.: On the polynomials with respect to the generalized Bernstein basis. In: Problems of modern mathematics and mathematical education, Hertzen readings. St.-Petersburg (2005), 130-134 Russian.