[1] Boas, H. P., Straube, E. J.: 
Global regularity of the $\bar{\partial} $-Neumann problem: a survey of the $L^2$-Sobolev theory. Several Complex Variables (M. Schneider and Y.-T. Siu, eds.) MSRI Publications, vol. 37, Cambridge University Press (1999), 79-111. 
MR 1748601[2] Catlin, D.: 
Global regularity of the $\bar{\partial} $-Neumann problem. Proc. Sympos. Pure Math. 41 39-49; A.M.S. Providence, Rhode Island, 1984. 
MR 0740870 | 
Zbl 0578.32031[4] Chen, So-Chin, Shaw, Mei-Chi: 
Partial differential equations in several complex variables. Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc. (2001). 
MR 1800297 | 
Zbl 0963.32001[7] Fu, S., Straube, E. J.: 
Compactness in the $\bar{\partial}$-Neumann problem. Complex Analysis and Geometry (J. McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. 
MR 1912737 | 
Zbl 1011.32025[8] Folland, G., Kohn, J.: 
The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies 75, Princeton University Press (1972). 
MR 0461588 | 
Zbl 0247.35093[10] Haslinger, F.: 
The canonical solution operator to $\bar{\partial}$ restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57-70. 
DOI 10.5802/afst.1018 | 
MR 1986383[12] Haslinger, F., Helffer, B.: 
Compactness of the solution operator to $\bar{\partial}$ in weighted $L^2$-spaces. J. Funct. Anal. 243 (2007), 679-697. 
DOI 10.1016/j.jfa.2006.09.004 | 
MR 2289700[14] Henkin, G., Iordan, A.: 
Compactness of the $\bar{\partial}$-Neumann operator for hyperconvex domains with non-smooth B-regular boundary. Math. Ann. 307 (1997), 151-168. 
DOI 10.1007/s002080050028 | 
MR 1427681[15] Kohn, J.: 
Subellipticity of the $\bar{\partial}$-Neumann problem on pseudoconvex Domains: sufficient conditions. Acta Math. 142 (1979), 79-122. 
DOI 10.1007/BF02395058 | 
MR 0512213[18] Ligocka, E.: 
The regularity of the weighted Bergman projections. Seminar on deformations, Proceedings, Lodz-Warsaw, 1982/84, Lecture Notes in Math. {\it 1165}, Springer-Verlag, Berlin (1985), 197-203. 
MR 0825756 | 
Zbl 0594.35049