Previous |  Up |  Next

Article

Keywords:
finite fields; permutation polynomials
Summary:
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated.
References:
[1] Carlitz, L., Lutz, J. A.: A characterization of permutation polynomials over a finite field. Am. Math. Mon. 85 (1978), 746-748. DOI 10.2307/2321681 | MR 0514040 | Zbl 0406.12011
[2] Chu, W., Golomb, S. W.: Circular Tuscan-$k$ arrays from permutation binomials. J. Comb. Theory, Ser. A 97 (2002), 195-202. DOI 10.1006/jcta.2001.3221 | MR 1879136 | Zbl 1009.05032
[3] Das, P.: The number of permutation polynomials of a given degree over a finite field. Finite Fields Appl. 8 (2002), 478-490. MR 1933619 | Zbl 1029.11066
[4] Gantmacher, F. R.: The Theory of Matrices, Volume I. Chelsea, New York (1977).
[5] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field?. Am. Math. Mon. 95 (1988), 243-246. DOI 10.2307/2323626 | MR 1541277 | Zbl 0653.12010
[6] Lidl, R., Mullen, G. L.: When does a polynomial over a finite field permute the elements of the field? II. Am. Math. Mon. 100 (1993), 71-74. DOI 10.2307/2324822 | MR 1542258 | Zbl 0777.11054
[7] Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley Reading (1983). MR 0746963 | Zbl 0554.12010
[8] Small, C.: Permutation binomials. Int. J. Math. Math. Sci. 13 (1990), 337-342. DOI 10.1155/S0161171290000497 | MR 1052532 | Zbl 0702.11085
[9] Wan, D., Lidl, R.: Permutation polynomials of the form $x^r f(x^{(q-1)/d})$ and their group structure. Monatsh. Math. 112 (1991), 149-163. DOI 10.1007/BF01525801 | MR 1126814
[10] Wan, Z.-X.: Lectures on Finite Fields and Galois Rings. World Scientific River Edge (2003). MR 2008834 | Zbl 1028.11072
[11] Zhou, K.: A remark on linear permutation polynomials. Finite Fields Appl. 14 (2008), 532-536. DOI 10.1016/j.ffa.2007.07.002 | MR 2401993
Partner of
EuDML logo