Previous |  Up |  Next

Article

Keywords:
Laplacian matrix; signless Laplacian matrix; spectral radius
Summary:
In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.
References:
[1] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs. Publ. Inst. Math. Beograd 39(53) (1986), 45-54. MR 0869175 | Zbl 0603.05028
[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.: A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl. 429 (2008), 2770-2780. MR 2455532
[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften Berlin (1980).
[4] Cvetković, D. M., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Cambridge University Press Cambridge (1997), 56-60. MR 1440854
[5] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. DOI 10.1016/j.laa.2007.01.009 | MR 2312332
[6] Geng, X. Y., Li, S. C.: The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 428 (2008), 2639-2653. MR 2416577
[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.: Algebraic graph theory without orientation. Linear Algebra Appl. 212-213 (1994), 289-307. MR 1306983 | Zbl 0817.05047
[8] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. MR 2202092 | Zbl 1082.05059
[9] Guo, S. G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85. MR 2166856 | Zbl 1073.05550
[10] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594
[11] Li, J. S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307. MR 1653547 | Zbl 0931.05052
[12] Li, Q., Feng, K.: On the largest eigenvalue of a graph. Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. MR 0549045
[13] Liu, B. L.: Combinatorial Matrix Theory. Science Press Beijing (2005), Chinese.
[14] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. MR 1275613 | Zbl 0802.05053
[15] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295. MR 1930150 | Zbl 1015.05055
[16] Rojo, O., Soto, R., Rojo, H.: An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra Appl. 312 (2000), 155-159. MR 1759329 | Zbl 0958.05088
[17] Wu, B., Xiao, E., Hong, Y.: The spectral radius of trees on $k$ pendant vertices. Linear Algebra Appl. 395 (2005), 343-349. MR 2112895 | Zbl 1057.05057
[18] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. DOI 10.1016/j.disc.2007.06.017 | MR 2423396 | Zbl 1156.05038
Partner of
EuDML logo