Previous |  Up |  Next

Article

Keywords:
B-Fredholm operator; Browder's theorem; generalized Browder's theorem; property $({\rm b})$; property $({\rm gb})$
Summary:
An operator $T$ acting on a Banach space $X$ possesses property $({\rm gw})$ if $\sigma _a(T)\setminus \sigma _{{\rm SBF}_+^-}(T)= E(T), $ where $\sigma _a(T)$ is the approximate point spectrum of $T$, $\sigma _{{\rm SBF} _+^-}(T)$ is the essential semi-B-Fredholm spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T.$ In this paper we introduce and study two new properties $({\rm b})$ and $({\rm gb})$ in connection with Weyl type theorems, which are analogous respectively to Browder's theorem and generalized Browder's theorem. \endgraf Among other, we prove that if $T$ is a bounded linear operator acting on a Banach space $X$, then property $({\rm gw})$ holds for $T$ if and only if property $({\rm gb})$ holds for $T$ and $E(T)=\Pi (T),$ where $\Pi (T)$ is the set of all poles of the resolvent of $T.$
References:
[1] Amouch, M., Berkani, M.: On the property $({\rm gw})$. Mediterr. J. Math. 5 (2008), 371-378. DOI 10.1007/s00009-008-0156-z | MR 2465582
[2] Amouch, M., Zguitti, H.: On the equivalence of Browder's and generalized Browder's theorem. Glasgow Math. J. 48 (2006), 179-185. DOI 10.1017/S0017089505002971 | MR 2224938 | Zbl 1097.47012
[3] Aiena, P., P. Peña: Variation on Weyl's theorem. J. Math. Anal. Appl. 324 (2006), 566-579. DOI 10.1016/j.jmaa.2005.11.027 | MR 2262492
[4] Barnes, B. A.: Riesz points and Weyl's theorem. Integral Equations Oper. Theory 34 (1999), 187-196. DOI 10.1007/BF01236471 | MR 1694707 | Zbl 0948.47002
[5] Berkani, M.: B-Weyl spectrum and poles of the resolvent. J. Math. Anal. Applications 272 (2002), 596-603. DOI 10.1016/S0022-247X(02)00179-8 | MR 1930862 | Zbl 1043.47004
[6] Berkani, M.: On the equivalence of Weyl theorem and generalized Weyl theorem. Acta Mathematica Sinica, English series 23 (2007), 103-110. DOI 10.1007/s10114-005-0720-4 | MR 2275483 | Zbl 1116.47015
[7] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc. 130 (2002), 1717-1723. DOI 10.1090/S0002-9939-01-06291-8 | MR 1887019 | Zbl 0996.47015
[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69 (2003), 359-376. MR 1991673 | Zbl 1050.47014
[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasgow Math. J. 43 (2001), 457-465. DOI 10.1017/S0017089501030075 | MR 1878588 | Zbl 0995.47008
[10] Coburn, L. A.: Weyl's theorem for nonnormal operators. Michigan Math. J. 13 (1966), 285-288. DOI 10.1307/mmj/1031732778 | MR 0201969 | Zbl 0173.42904
[11] Djordjević, S. V., Han, Y. M.: Browder's theorems and spectral continuity. Glasgow Math. J. 42 (2000), 479-486. DOI 10.1017/S0017089500030147 | MR 1793814 | Zbl 0979.47004
[12] Heuser, H.: Functionl Analysis. John Wiley, New York (1982).
[13] Radjavi, H., Rosenthal, P.: Invariant Subspaces. Springer, Berlin (1973). MR 0367682 | Zbl 0269.47003
[14] Rakočević, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919. MR 1030982
[15] Rakočević, V.: On a class of operators. Mat. Vesnik. 37 (1985), 423-426. MR 0836891
[16] Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann. 163 (1966), 18-49. DOI 10.1007/BF02052483 | MR 0190759 | Zbl 0138.07602
Partner of
EuDML logo