Article
Keywords:
Novikov algebra; Novikov superalgebra; type  $N$; type  $S$
Summary:
Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_0=A_1A_1$ and $\dim A_1=2$ are of type  $N$ and give a class of Novikov superalgebras of type  $S$ with $A_0=A_1A_1$.
References:
                        
[1] Balinskii, A. A., Novikov, S. P.: 
Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231. 
MR 0802121 | 
Zbl 0606.58018[2] Gel'fand, I. M., Dorfman, I. Ya.: 
Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262. 
DOI 10.1007/BF01078363 | 
Zbl 0437.58009[3] Gel'fand, I. M., Dorfman, I. Y.: 
The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223-226. 
DOI 10.1007/BF01086188 | 
MR 0583806[5] Kac, V. G.: 
Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS) Providence (1998). 
MR 1651389[8] Xu, X. P.: 
Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer Dordercht (1998). 
MR 1656671 | 
Zbl 0929.17030