[1] Belhachmi, Z., Sac-Epée, J. M., Sokołowski, J.:
Mixed finite element methods for smooth domain formulation of crack problems. SIAM J. Numer. Anal. 43 (2005), 1295-1320.
DOI 10.1137/S0036142903429729 |
MR 2177806
[3] Fremiot, G., Sokołowski, J.:
Shape sensitivity analysis of problems with singularities. Shape Optimization and Optimal Design. Proc. IFIP coference, Cambridge 1999. Lect. Notes Pure Appl. Math. 216 J. Cagnol et al. Marcel Dekker New York (2001).
MR 1812355 |
Zbl 0984.49024
[4] Fulmański, P., Lauraine, A., Scheid, J.-F., Sokołowski, J.:
A level set method in shape and topology optimization for variational inequalities. Int. J. Appl. Math. Comput. Sci., 17 (2007), 413-430.
DOI 10.2478/v10006-007-0034-z |
MR 2356899
[6] Hlaváček, I., Novotný, A. A., Sokołowski, J., .Zochowski, A.:
On topological derivatives for elastic solids with uncertain input data. J. Optim. Theory Appl. 141 (2009), 569-595.
DOI 10.1007/s10957-008-9490-3 |
MR 2507486
[7] Hoffmann, K.-H., Khludnev, A. M.:
Fictitious domain method for the Signorini problem in linear elasticity. Adv. Math. Sci. Appl. 14 (2004), 465-481.
MR 2111825
[9] Khludnev, A. M., Kovtunenko, V. A.: Analysis of Cracks in Solids. WIT Press Southampton-Boston (2000).
[11] Khludnev, A. M., Ohtsuka, K., Sokołowski, J.:
On derivative of energy functional for elastic bodies with a crack and unilateral conditions. Q. Appl. Math. 60 (2002), 99-109.
DOI 10.1090/qam/1878261 |
MR 1878261
[12] Khludnev, A. M., Sokołowski, J.:
Modelling and Control in Solid Mechanics. International Series of Numerical Mathematics. Birkhäuser Basel (1997).
MR 1433133
[13] Khludnev, A. M., Sokołowski, J.:
Griffith formulae for elasticity systems with unilateral conditions in domains with cracks. Eur. J. Mech. A, Solids 19 (2000), 105-119.
DOI 10.1016/S0997-7538(00)00138-8 |
MR 1748780
[14] Khludnev, A. M., Sokołowski, J.: On differentiation of energy functionals in the crack theory with possible contact between crack faces. J. Appl. Math. Mech. 64 (2000), 464-475.
[18] Kovtunenko, V. A.:
Numerical simulation of the non-linear crack problem with non-penetration. Math. Methods Appl. Sci. 27 (2004), 163-179.
DOI 10.1002/mma.449 |
MR 2029877
[19] Laurain, A.:
Structure of shape derivatives in non-smooth domains and applications. Adv. Math. Sci. Appl. 15 (2005), 199-226.
MR 2148282
[20] Lazarev, N. P.:
Differentiation of energy functional in the equilibrium problem for a body with a crack and Signorini boundary conditions. J. Appl. Industr. Math. 5 (2002), 139-147.
MR 1960797
[22] Maz'ja, W. G., Nazarov, S. A., Plamenevskii, B. A.:
Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. I, II. Birkhäuser Basel (2000).
MR 1779977
[23] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff Groningen (1952).
[26] Rudoy, E. M.:
Differentiation of energy functions in the three-dimensional theory of elasticity for bodies with surfaces cracks. J. Appl. Ind. Math. 1 (2007), 95-104.
DOI 10.1134/S1990478907010103 |
MR 2221674
[27] Rudoy, E. M.:
Differentiation of energy functionals in the problem of a curvilinear crack with possible contact between the shores. Mech. Solids 42 (2007), 935-946.
DOI 10.3103/S0025654407060118 |
MR 2466473
[28] Sokołowski, J., Zolesio, J-P.:
Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, Vol. 16. Springer Berlin (1992).
MR 1215733
[30] Sokołowski, J., .Zochowski, A.:
Optimality conditions for simultaneous topology and shape optimization. SIAM J. Control Optim. 42 (2003), 1198-1221.
DOI 10.1137/S0363012901384430 |
MR 2044792
[32] Sokołowski, J., .Zochowski, A.: Asymptotic analysis and topological derivatives for shape and topology optimization of elasticity problems in two spatial dimensions. Prépublication IECN 16, 2007.