[1] Brézis H., Wainger S.: 
A note on limiting case of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. 
DOI 10.1080/03605308008820154 | 
MR 0579997 
[6] Edmunds D.E., Gurka P., Opic B.: 
Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151–181. 
MR 1347439 | 
Zbl 0829.47024 
[7] Edmunds D.E., Gurka P., Opic B.: 
Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009. 
MR 1415818 | 
Zbl 0860.46024 
[10] Hajlasz P., Koskela P.: 
Sobolev met Poincaré. Memoirs of the Amer. Math. Soc 145 (2000), 101pp. 
MR 1683160 | 
Zbl 0954.46022 
[11] Hansson K.: 
Imbeddings theorems of Sobolev type in potential theory. Math. Scand. 49 (1979), 77–102. 
MR 0567435 
[18] Maz'ya V.: A theorem on multidimensional Schrödinger operator. (Russian), Izv. Akad. Nauk 28 (1964), 1145–1172.
[22] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170.
[23] Rao M.M., Ren Z.D.: 
Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. 
MR 1113700 | 
Zbl 0724.46032 
[25] Trudinger N.S.: 
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–484. 
MR 0216286 | 
Zbl 0163.36402 
[26] Yudovič V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 (1961), 746–749.