[7] Cahen B.: 
Weyl quantization for principal series. Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. 
MR 2326408 | 
Zbl 1134.22010 
[8] Cahen B.: 
Contraction of compact semisimple Lie groups via Berezin quantization. Illinois J. Math. 53 (2009), no. 1, 265–288. 
MR 2584946 | 
Zbl 1185.22008 
[9] Cahen B.: 
Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. 
MR 2572131 | 
Zbl 1185.22007 
[10] Cahen B.: 
Weyl quantization for the semi-direct product of a compact Lie group and a vector space. Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. 
MR 2573408 
[11] B. Cahen: 
A contraction of the principal series by Berezin-Weyl quantization. Univ. Metz, preprint, 2010. 
MR 2682458 
[13] Cotton P., Dooley A.H.: 
Contraction of an adapted functional calculus. J. Lie Theory 7 (1997), 147–164. 
MR 1473162 | 
Zbl 0882.22015 
[16] Helgason S.: 
Differential Geometry, Lie Groups and Symmetric Spaces. Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. 
MR 1834454 | 
Zbl 0993.53002 
[17] Hörmander L.: The Analysis of Linear Partial Differential Operators. Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985.
[18] Kirillov A.A.: 
Lectures on the Orbit Method. Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. 
MR 2069175 
[19] Knapp A.W.: 
Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. 
MR 0855239 | 
Zbl 0993.22001 
[20] B. Kostant: 
Quantization and unitary representations. in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. 
DOI 10.1007/BFb0079068 | 
MR 0294568 | 
Zbl 0249.53016 
[21] Mackey G.: 
On the analogy between semisimple Lie groups and certain related semi-direct product groups. in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. 
MR 0409726 | 
Zbl 0324.22006 
[24] Taylor M.E.: 
Noncommutative Harmonis Analysis. Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. 
MR 0852988 
[26] Wallach N.R.: 
Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. 
MR 0498996 | 
Zbl 0265.22022