Previous |  Up |  Next

Article

Keywords:
non-classical logics; D-posets; effect algebras; $MV$-algebras; interval and order topology; states
Summary:
We prove that the interval topology of an Archimedean atomic lattice effect algebra $E$ is Hausdorff whenever the set of all atoms of $E$ is almost orthogonal. In such a case $E$ is order continuous. If moreover $E$ is complete then order convergence of nets of elements of $E$ is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on $E$ corresponding to compact and cocompact elements. For block-finite Archimedean atomic lattice effect algebras the equivalence of almost orthogonality and s-compact generation is shown. As the main application we obtain a state smearing theorem for these effect algebras, as well as the continuity of $øplus$-operation in the order and interval topologies on them.
References:
[1] Beltrametti, E. G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading 1981. MR 0635780 | Zbl 0504.03026
[2] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958) 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[3] Császár, A.: General Topology. Akadémiai Kiadó, Budapest 1978.
[4] Erné, M., Weck, S.: Order convergence in lattices. Rocky Mt. J. Math. 10 (1980), 805–818. DOI 10.1216/RMJ-1980-10-4-805 | MR 0595106
[5] Frink, O.: Topology in lattices. Trans. Amer. Math. Soc. 51 (1942), 569–582. MR 0006496 | Zbl 0061.39305
[6] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. DOI 10.1007/BF01108592 | MR 1336539
[7] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. MR 1655076 | Zbl 0939.03073
[8] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[9] Jenča, G., Riečanová, Z.: A survey on sharp elements in unsharp Qquantum logics. J. Electr. Engrg. 52 (2001), 7–8, 237-239.
[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.
[11] Katětov, M.: Remarks on Boolean algebras. Colloq. Math. 11 (1951), 229–235. MR 0049862
[12] Kirchheimová, H., Riečanová, H.: Note on order convergence and order topology. In: B. Riečan and T. Neubrunn: Measure, Integral and Order, Appendix B, Ister Science (Bratislava) and Kluwer Academic Publishers, Dordrecht – Boston – London 1997.
[13] Kôpka, F.: Compatibility in D-posets. Interernat. J. Theor. Phys. 34 (1995), 1525–1531. DOI 10.1007/BF00676263 | MR 1353696
[14] Qiang, Lei, Junde, Wu, Ronglu, Li: Interval topology of lattice effect algebras. Appl. Math. Lett. 22 (2009), 1003–1006. DOI 10.1016/j.aml.2009.01.008 | MR 2522989
[15] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/S, 3–6.
[16] Paseka, J., Riečanová, Z.: Compactly generated de Morgan lattices, basic algebras and effect algebras. Internat. J. Theor. Phys. 49 (2010), 3216–3223. DOI 10.1007/s10773-009-0011-4 | MR 2738081 | Zbl 1202.06007
[17] Pulmannová, S., Riečanová, Z.: Compact topological orthomodular lattices. In: Contributions to General Algebra 7, Verlag Hölder – Pichler – Tempsky, Wien, Verlag B.G. Teubner, Stuttgart 1991, pp. 277–282. MR 1143091
[18] Pulmannová, S., Riečanová, Z.: Blok finite atomic orthomodular lattices. J. Pure and Applied Algebra 89 (1993), 295–304. DOI 10.1016/0022-4049(93)90058-2
[19] Riečanová, Z.: On Order Continuity of Quantum Structures and Their Homomorphisms. Demonstratio Mathematica 29 (1996), 433–443. MR 1407855
[20] Riečanová, Z.: Lattices and Quantum Logics with Separated Intervals Atomicity, Internat. J. Theor. Phys. 37 (1998), 191–197. DOI 10.1023/A:1026642028987 | MR 1637165
[21] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mt. Math. Publ. 16 (1999), 151–158. MR 1725293
[22] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Mathematica 33 (2000), 443–452. MR 1791464
[23] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. J. of Theor. Phys. 39 (2000), 231–237. DOI 10.1023/A:1003619806024 | MR 1762594
[24] Riečanová, Z.: Orthogonal Sets in Effect Algebras. Demonstratio Mathematica 34 (2001), 525–532. MR 1853730 | Zbl 0989.03071
[25] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. of Theor. Phys. 41 (2002), 1511–1524. DOI 10.1023/A:1020136531601 | MR 1932844 | Zbl 1016.81005
[26] Riečanová, Z.: Continuous Lattice Effect Algebras Admitting Order-Continuous States. Fuzzy Sests and Systems 136 (2003), 41–54. MR 1978468 | Zbl 1022.03047
[27] Riečanová, Z.: Order-topological lattice effect algebras. In: Contributions to General Algebra 15, Proc. Klagenfurt Workshop 2003 on General Algebra, Klagenfurt 2003, pp. 151–160. MR 2082379
[28] Riečanová, Z., Paseka, J.: State smearing theorems and the existence of states on some atomic lattice effect algebras. J. Logic and Computation, Advance Access, published on March 13, 2009, doi:10.1093/logcom/exp018.
[29] Sarymsakov, T.A., Ajupov, S.A., Chadzhijev, Z., Chilin, V.J.: Ordered algebras. FAN, Tashkent, (in Russian), 1983. MR 0781349
[30] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Archiv d. Math. 7 (1956), 241–249. MR 0084484
Partner of
EuDML logo