Previous |  Up |  Next

Article

Keywords:
finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements
Summary:
New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.
References:
[1] Al-Adilee, A. M., Nánásiová, O.: Copula and s-map on a quantum logic. Inform. Sci. 179 (2009), 4199–4207. DOI 10.1016/j.ins.2009.08.011 | MR 2722377 | Zbl 1180.81005
[2] Dohnal, G.: Markov property in quantum logic. A reflection. Inform. Sci. 179 (2009), 485–491. DOI 10.1016/j.ins.2008.10.008 | MR 2490187 | Zbl 1161.81309
[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structure. Kluwer Acad. Publishers, Dortrecht/Boston/London, Ister Science, Bratislava 2000. MR 1861369
[4] Greechie, R. J.: Orthogonal lattices admitting no states. J. Combin. Theory, Ser. A10 (1971), 119–132. DOI 10.1016/0097-3165(71)90015-X | MR 0274355
[5] Kalmbach, G.: Orthomodular Lattices. Academic Press, London 1983. MR 0716496 | Zbl 0528.06012
[6] Nánásiová, O.: Map for simultaneous measurements for a quantum logic. Internat. J. Theoret. Phys. 42 (2003), 1889–1903. DOI 10.1023/A:1027384132753 | MR 2023910 | Zbl 1053.81006
[7] Nánásiová, O.: Principle conditioning. Internat. J. Theoret. Phys. 43 (2004), 1757–1767. DOI 10.1023/B:IJTP.0000048818.23615.28 | MR 2108309 | Zbl 1074.81006
[8] Nánásiová, O., Khrennikov, A.: Representation theorem for observables on a quantum system. Internat. J. Theoret. Phys. 45 (2006), 469–482. DOI 10.1007/s10773-006-9030-6 | MR 2241859
[9] Nánásiová, O., Khrennikov, A.: Compatibility and marginality. Internat. J. Theoret. Phys. 46 (2007) 1083–1095. DOI 10.1007/s10773-006-9034-2 | MR 2330390 | Zbl 1133.81002
[10] Nánásiová, O., Pulmannová, S.: S-map and tracial states. Inform. Sci. 179 (2009) 515–520. DOI 10.1016/j.ins.2008.07.032 | MR 2490191 | Zbl 1161.81311
[11] Nánásiová, O., Trokanová, K., Žembery, I.: Commutative and non commutative s-maps. Forum Statist. Slovacum 2 (2007) 172–177.
[12] Nánásiová, O., Valášková, L’.: Maps on a quantum logic. Soft Computing (2009). doi:10.1007/s00500-009-0483-4
[13] Nánásiová, O., Valášková, L’.: Marginality and triangle inequality Internat. J. Theoret. Phys. (2010), accepted. MR 2738079
[14] Navara, M.: An othomodular lattice admitting no group-valued measure. Proc. Amer. Math. Soc. 122 (1994), 7–12. DOI 10.1090/S0002-9939-1994-1191871-X | MR 1191871
[15] Neumann, J. von: Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin 1932. MR 0223138
[16] Pták, P., Pulmannová, S.: Quantum Logics. Kluwer Acad. Press, Bratislava 1991. MR 1176314
[17] Varadarajan, V.: Geometry of Quantum Theory. D. Van Nostrand, Princeton, New Jersey 1968. MR 0471674 | Zbl 0155.56802
Partner of
EuDML logo