[1] Amrouche, C., Girault, V.: 
Decomposition of vector spaces and application of the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994), 109-140. 
MR 1257940 
[2] Bear, J.: 
Dynamics of Fluids in Porous Media. Elsevier New York (1972). 
Zbl 1191.76001 
[3] Bogovskiĭ, M. E.: 
Solution of some problems of vector analysis associated with the operators div and grad. Tr. Semin. S. L. Soboleva 1 (1980), 5-40 Russian. 
MR 0631691 
[4] Boyer, F., Fabrie, P.: 
Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 219-250 (electronic). 
MR 2276406 
[6] Bruneau, C.-H., Fabrie, P.: 
Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 19 (1994), 693-705. 
DOI 10.1002/fld.1650190805 | 
Zbl 0816.76024 
[8] Bulíček, M., Fišerová, V.: 
Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend. 28 (2009), 349-371. 
DOI 10.4171/ZAA/1389 | 
MR 2506365 | 
Zbl 1198.35174 
[9] Bulíček, M., Málek, J., Rajagopal, K. R.: 
Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries. SIAM J. Math. Anal. 41 (2009), 665-707. 
DOI 10.1137/07069540X | 
MR 2515781 | 
Zbl 1195.35239 
[11] Bulíček, M., Málek, J., Rajagopal, K. R.: 
Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\to+\infty$ as $p\to+\infty$. Czechoslovak Math. J. 59 (2009), 503-528. 
DOI 10.1007/s10587-009-0034-2 | 
MR 2532387 | 
Zbl 1224.35311 
[14] Filo, J., Zaušková, A.: 
2D Navier-Stokes equations in a time dependent domain with Neumann type boundary conditions. J. Math. Fluid Mech. 10 (2008), 1-46. 
MR 2602913 
[15] Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45 (1901), 1781-1788 German.
[18] Haslinger, J., Málek, J., Stebel, J.: 
Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis. Control Cybern. 34 (2005), 283-303. 
MR 2211072 | 
Zbl 1167.49328 
[19] Hassanizadeh, S. M., Gray, W. G.: 
High velocity flow in porous media. Transp. in Porous Media 2 (1987), 521-531. 
DOI 10.1007/BF00192152 
[21] Hron, J., Málek, J., Nečas, J., Rajagopal, K. R.: 
Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Math. Comput. Simul. 61 (2003), 297-315. 
DOI 10.1016/S0378-4754(02)00085-X | 
MR 1984133 | 
Zbl 1205.76159 
[22] Hron, J., Málek, J., Rajagopal, K. R.: 
Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 457 (2001), 1603-1622. 
DOI 10.1098/rspa.2000.0723 | 
Zbl 1052.76017 
[24] Kučera, P.: 
Solutions of the stationary Navier-Stokes equations with mixed boundary conditions in bounded domain. In: Analysis, Numerics and Applications of Differential and Integral Equations M. Bach et al. Pitman Res. Notes Math. Ser. 379 (1998), 127-131. 
MR 1606691 
[25] Kučera, P., Skalák, Z.: 
Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Appl. Math. 54 (1998), 275-288. 
DOI 10.1023/A:1006185601807 | 
MR 1671783 
[26] Lanzendörfer, M.: 
On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. 
MR 2508405 | 
Zbl 1163.76335 
[28] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: 
Weak and Measure-Valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput., Vol. 13. Chapman & Hall London (1996). 
MR 1409366 
[29] Málek, J., Rajagopal, K. R.: 
Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Evolutionary equations, Vol. II. Handbook Differential Equtions Elsevier/North Holland Amsterdam (2005), 371-459. 
MR 2182831 | 
Zbl 1095.35027 
[30] Málek, J., Rajagopal, K. R.: 
Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities. In: Handbook Math. Fluid Dyn., Vol. IV Elsevier Amsterdam (2006). 
MR 3929620 
[31] Mikeli'c, A.: 
Homogenization theory and applications to filtration through porous media. Filtration in Porous Media and Industrial Application. Lect. Notes Math. Vol. 1734 A. Fasano Springer Berlin (2000). 
MR 1816145 
[32] Novotný, A., Straškraba, I.: 
Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27. Oxford University Press Oxford (2004). 
MR 2084891 
[33] Quarteroni, A.: Fluid structure interaction for blood flow problems. Lecture Notes on Simulation of Fluid and Structure Interaction. AMS-AMIF Summer School, Prague European Mathematical Society Prague (2001).
[34] Shopov, P. J., Iordanov, Y. I.: 
Numerical solution of Stokes equations with pressure and filtration boundary conditions. J. Comput. Phys. 112 (1994), 12-23. 
DOI 10.1006/jcph.1994.1078 | 
Zbl 0798.76042