[3] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: 
Testing a class of methods for solving minimization problems with simple bounds on the variables. ACM Trans. Math. Softw. 7 (1981), 17-41. 
MR 1438096[4] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: 
Global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988), 433-460. 
DOI 10.1137/0725029 | 
MR 0933734 | 
Zbl 0643.65031[5] Conn, A. R., Gould, N. I. M., Toint, Ph. L.: 
Correction to the paper on global convergence of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 26 (1989), 764-767. 
DOI 10.1137/0726044 | 
MR 0997667 | 
Zbl 0673.65033[10] Facchinei, F., Júdice, J., Soares, J.: 
An active set Newton algorithm for large-scale nonlinear programs with box constraints. SIAM J. Optim. 8 (1998), 158-186. 
DOI 10.1137/S1052623493253991 | 
MR 1617441[11] Facchinei, F., Júdice, J., Soares, J.: 
Generating box-constrained optimization problems. ACM Trans. Math. Softw. 23 (1997), 443-447. 
DOI 10.1145/275323.275331[12] Facchinei, F., Lucidi, S.: 
Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problems. J. Optimization Theory Appl. 85 (1995), 265-289. 
DOI 10.1007/BF02192227 | 
MR 1333788 | 
Zbl 0830.90125[14] Fan, R. E., Chen, P. H., Lin, C. J.: 
Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6 (2005), 1889-1918. 
MR 2249875 | 
Zbl 1222.68198[15] Gill, P. E., Murray, W., Wright, M. H.: 
Practical Optimization. Academic Press London (1981). 
MR 0634376 | 
Zbl 0503.90062[17] Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: 
Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption. Math. Program. 86 (1999), 615-635. 
DOI 10.1007/s101070050107 | 
MR 1733741 | 
Zbl 0945.49023[19] Lescrenier, M.: 
Convergence of trust region algorithms for optimization with bounds when strict complementarity does not hold. SIAM J. Numer. Anal. 28 (1991), 476-495. 
DOI 10.1137/0728026 | 
MR 1087515 | 
Zbl 0726.65068[21] Moré, J. J., Toraldo, G.: 
On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1 (1991), 93-113. 
DOI 10.1137/0801008 | 
MR 1094793[25] Pillo, G. Di, Facchinei, F., Grippo, L.: 
An $RQP$ algorithm using a differentiable exact penalty function for inequality constrained problems. Math. Program. 55 (1992), 49-68. 
DOI 10.1007/BF01581190 | 
MR 1163293 | 
Zbl 0767.90060[27] Schittkowski, K.: 
More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, Vol. 282. Springer Berlin (1987). 
MR 1117683