Previous |  Up |  Next

Article

Keywords:
space forms; $r$-th mean curvatures; $r$-stability
Summary:
In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature.
References:
[1] Alencar, H., do Carmo, M., Colares, A. G.: Stable hypersurfaces with constant scalar curvature. Math. Z. 213 (1993), 117–131. DOI 10.1007/BF03025712 | MR 1217674 | Zbl 0792.53057
[2] Barbosa, J. L. M., Colares, A. G.: Stability of hypersurfaces with constant $r$-mean curvature. Ann. Global Anal. Geom. 15 (1997), 277–297. DOI 10.1023/A:1006514303828 | MR 1456513 | Zbl 0891.53044
[3] Barbosa, J. L. M., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185 (3) (1984), 339–353. DOI 10.1007/BF01215045 | MR 0731682 | Zbl 0513.53002
[4] Barbosa, J. L. M., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1) (1988), 123–138. DOI 10.1007/BF01161634 | MR 0917854 | Zbl 0653.53045
[5] Barros, A., Sousa, P.: Compact graphs over a sphere of constant second order mean curvature. Proc. Amer. Math. Soc. 137 (2009), 3105–3114. DOI 10.1090/S0002-9939-09-09862-1 | MR 2506469 | Zbl 1189.53058
[6] Caminha, A.: On spacelike hypersurfaces of constant sectional curvature Lorentz manifolds. J. Geom. Phys. 56 (2006), 1144–1174. DOI 10.1016/j.geomphys.2005.06.007 | MR 2234043 | Zbl 1102.53044
[7] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | MR 0431043 | Zbl 0349.53041
[8] de Lima, H. F.: Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space. J. Geom. Phys. 57 (2007), 967–975. DOI 10.1016/j.geomphys.2006.07.005 | MR 2275203 | Zbl 1111.53049
[9] He, Y., Li, H.: Stability of area-preserving variations in space forms. Ann. Global Anal. Geom. 34 (2008), 55–68. DOI 10.1007/s10455-007-9095-3 | MR 2415178 | Zbl 1156.53037
[10] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J. Differential Equations 8 (1973), 465–477. MR 0341351 | Zbl 0277.53030
[11] Rosenberg, H.: Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117 (1993), 217–239. MR 1216008 | Zbl 0787.53046
[12] Xin, Y.: Minimal submanifolds and related topics. World Scientific Publishing co., Singapore, 2003. MR 2035469 | Zbl 1055.53047
Partner of
EuDML logo