[1] Baskaran, M. M., Bordaweker, R.: Optimizing Sparse-Vector Matrix Multiplication on Gpus. IBM Research Report RC24704, IBM 2009.
[2] Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on throughput oriented processors. In Supercomputing’09, Nov. 2009.
[3] Beneš, M.: 
Mathematical and computational aspects of solidification of pure substances. Acta Math. Univ. Comenian. 70 (2000), 123–151. 
MR 1865364[6] Beneš, M.: Phase Field Model of Microstructure Growth in Solidification of Pure Substances. PhD. Dissertation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague 1997.
[7] Beneš, M., Mikula, K., Oberhuber, T., Ševčovič, D.: 
Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed plannar curves. Computing and Visualization in Science 12 (2009), 307–317. 
DOI 10.1007/s00791-008-0112-2 | 
MR 2520782[8] Bertalmio, M., Caselles, V., Haro, G., Sapiro, G.: 
Handbook of Mathematical Models in Computer Vision. PDE-Based Image and Surface Inpainting, Springer 2006, pp. 33–61. 
MR 2232523[9] Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: 
Sparse matrix solvers on the gpu: Conjugate gradients and multigrid. ACM Trans. Graphics 22 (2003), 3, 917–924. 
DOI 10.1145/882262.882364[10] Buatois, L., Caumon, G., Levy, B.: 
Concurrent number cruncher: a gpu implementation of a general sparse linear solver. Internat. J. Parallel Emerg. Distrib. Syst. 24 (2009), 3, 205–223. 
DOI 10.1080/17445760802337010 | 
MR 2750686[11] Chen, Y.-G., Giga, Y., Goto, S.: 
Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991), 3, 749–786. 
MR 1100211 | 
Zbl 0696.35087[13] Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: 
A finite element method for surface restoration with smooth boundary conditions. Computer Aided Geometric Design 21 (2004), 5, 427–445. 
DOI 10.1016/j.cagd.2004.02.004 | 
MR 2058390 | 
Zbl 1069.65546[14] Deckelnick, K., Dziuk, G.: 
Mathematical aspects of evolving interfaces. Lecture Notes in Math. 1812, Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets, Springer-Verlag, Berlin–Heidelberg 2003, pp. 53–87. 
MR 2011033[15] Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in $\mathbb {R}^n$: Existence and computation. SIAM J. Math. Anal.41 (2003), 6, 2161–2179.
[18] Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S. H., Grajewski, M., Turek, S.: Exploring weak scalability for fem calculations on a gpu-enhanced cluster. Parallel Computing, Special issue: High-performance computing using accelerators 33 (2007), 685–699.
[19] Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Wobker, H., Becker, C., Turek, S.: Using gpus to improve multigrid solver performance on a cluster. Internat. J. Comput. Sci. Engrg. 4 (2008), 1, 36–55.
[20] Göddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., Turek, S.: 
Co-processor acceleration of an unmodified parallel solid mechanics code with feastgpu. Internat. J. Comput. Sci. Engrg. 4 (2009), 4, 254–269. 
DOI 10.1504/IJCSE.2009.029162[21] Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Pearson, Addison Wesley 2003.
[22] Gurtin, M. E.: 
On the two-phase stefan problem with interfacial energy and entropy. Arch. Rational Mech. Anal. 96 (1986), 200–240. 
MR 0855304 | 
Zbl 0654.73008[23] Handlovičová, A., Mikula, K., Sgallari, F.: 
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695. 
DOI 10.1007/s002110100374 | 
MR 1961884 | 
Zbl 1065.65105[24] Harris, M.: Optimizing parallel reduction in cuda. NVIDIA CUDA SDK 2007.
[25] Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung 28 (1973), 693–703.
[26] Huisken, G.: 
Flow by mean curvature of convex surfaces into spheres. J. Differential Geometry 20 (1984), 237–266. 
MR 0772132 | 
Zbl 0556.53001[28] Kimura, M.: 
Topics in mathematical modeling. Jindřich Nečas Center for Mathematical Modelling 4, Lecture Notes, Geometry of Hypersurfaces and Moving Hypersurfaces in $R^m$ for the Study of Moving Boundary Problems, Matfyzpress, Publishing House of Mathematics and Physics, Charles University in Prague 2008, pp. 39–94. 
MR 2868564[29] Kruger, J., Westermann, R.: 
Linear algebra operators for gpu implementation of numerical algorithms. ACM Trans. Graphics 22 (2003), 3, 908–916. 
DOI 10.1145/882262.882363[30] Kuwert, E., Schätzle, R.: 
Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2003), 2, 307–340. 
MR 1900754[31] Kuwert, E., Schätzle, R.: 
The Willmore flow with small initial energy. J. Differ. Geom. 57 (2001), 409–441. 
MR 1882663 | 
Zbl 1035.53092[32] Mayer, U. F., Simonett, G.: 
Evolution equations: Applications to physics, industry, life scienses economics. Self-intersections for Willmore flow, Progress in nonlinear differential equations and their applications, Birkhäuser Verlag, Basel 2003, pp. 341–348. 
MR 2013200[33] Mikula, K.: 
Image processing with partial differential equations. In: Modern Methods in Scientific Computing and Applications (A. Bourlioux and M. Gander, eds.), NATO Science Ser. II 75, Kluwer Academic Publishers, Dodrecht 2002, pp. 283–322. 
MR 2004358 | 
Zbl 1065.94502[34] Mikula, K., Sarti, A.: Parametric and geometric deformable models: An application in biomaterials and medical imagery. In: Parallel co-volume subjective surface method for 3D medical image segmentation 2, 2007, pp. 123–160.
[35] Nitsche, J. C. C.: 
On new results in the theory of minimal surfaces.  Bull. Amer. Math. Soc. 71 (1965), 195–270. 
MR 0173993 | 
Zbl 0135.21701[36] Oberhuber, T.: 
Complementary finite volume scheme for the anisotropic surface diffusion flow. In: Proc. Algoritmy 2009 (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), pp. 153–164. 
Zbl 1172.65375[37] Oberhuber, T.: Numerical Solution of Willmore Flow. PhD. Thesis, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 2009.
[38] Pharr, M., ed.: GPU Gems 2: Programming Techniques for High-Performance Graphics and General–Purpose Computation. Addison-Wesley, 2005.
[39] Simonett, G.: 
The Willmore flow near spheres. Differential and Integral Equations 14 (2001), 8, 1005–1014. 
MR 1827100 | 
Zbl 1161.35429[40] Šimek, V., Dvořák, R., Zbořil, F., Kunovský, J.: Towards accelerated computation of atmospheric equations using CUDA. In: 11th Internat. Conf. on Computer Modelling and Simulation, pp. 449–454, 2009.
[41] Svetina, S., Žekš, B.: 
Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989), 101–111. 
DOI 10.1007/BF00257107[42] Vitásek, E.: Numerické metody (In Czech). SNTL, Nakladatelství technické literatury, 1987.
[44] Zhang, Y., Cohen, J., Owens, J. D.: Fast tridiagonal solvers on the gpu. In: Proc. 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2010, p. 10.