[2] Baets, B. De, Mesiar, R.:
Triangular norms on product lattices. Fuzzy Sets and Systems104 (1999), 61–75.
MR 1685810 |
Zbl 0935.03060
[3] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-EST YLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
[4] Casasnovas, J., Mayor, G.:
Discrete t-norms and operations on extended multisets. Fuzzy Sets and Systems 1599 (2008), 1165–1177.
MR 2416385 |
Zbl 1176.03023
[5] Drossos, C. A.:
Generalized t-norm structures. Fuzzy Sets and Systems 104 (1999), 53–59.
MR 1685809 |
Zbl 0928.03069
[6] Gonzalez, L.:
A note on the infinitary action of triangular norms and conorms. Fuzzy Sets and Systems 101 (1999), 177–180.
MR 1658924 |
Zbl 0934.03033
[7] Gottwald, S.:
A Treatise on Many-Valued Logics. Research Studies Press Ltd., Baldock, Hertfordshire 2001.
MR 1856623 |
Zbl 1048.03002
[9] Hájek, P.:
Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998.
MR 1900263
[10] Höhle, U.: Commutative, residuated $\ell $-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory (U. H$\ddot{o}$hle and E. P. Klement, eds.). Kluwer, Dordrecht 1995.
[11] Jenei, S., Baets, B. De:
On the direct decomposability of t-norms on product lattices. Fuzzy Sets and Systems 139 (2003), 699–707.
MR 2015162 |
Zbl 1032.03022
[12] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee $-distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets and Systems 160 (2009), 32–43.
[13] Karaçal, F., Khadjiev, Dj.:
$\bigvee $-distributive and infinitely $\bigvee $-distributive t-norms on complete lattice. Fuzzy Sets and Systems 151 (2005), 341–352.
MR 2124884
[16] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1010.03046
[17] Liang, X., Pedrycz, W.:
Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms. Fuzzy Sets and Systems 160 (2009), 3475–3502.
MR 2563300 |
Zbl 1185.68546
[21] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1403–1416.
MR 2226983 |
Zbl 1099.06004
[23] Samuel, S.: Calculating the large N phase diagram in the fundamental-adjoint action lattice theory. Phys. Lett. 122 (1983), 287–289.