Previous |  Up |  Next

Article

Keywords:
triangular norm; bounded lattice; triangular action; $\bigvee $-distributive; idempotent element
Summary:
A partial order on a bounded lattice $L$ is called t-order if it is defined by means of the t-norm on $L$. It is obtained that for a t-norm on a bounded lattice $L$ the relation $a\preceq_{T}b$ iff $a=T(x,b)$ for some $x\in L$ is a partial order. The goal of the paper is to determine some conditions such that the new partial order induces a bounded lattice on the subset of all idempotent elements of $L$ and a complete lattice on the subset $A$ of all elements of $L$ which are the supremum of a subset of atoms.
References:
[1] Birkhoff, G.: Lattice Theory. Third edition. Providience 1967. MR 0227053 | Zbl 0153.02501
[2] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems104 (1999), 61–75. MR 1685810 | Zbl 0935.03060
[3] Baets, B. De, Mesiar, R.: Triangular norms on the real unit square. In: Proc. 1999 EUSFLAT-EST YLF Joint Conference, Palma de Mallorca 1999, pp. 351-354.
[4] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets and Systems 1599 (2008), 1165–1177. MR 2416385 | Zbl 1176.03023
[5] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets and Systems 104 (1999), 53–59. MR 1685809 | Zbl 0928.03069
[6] Gonzalez, L.: A note on the infinitary action of triangular norms and conorms. Fuzzy Sets and Systems 101 (1999), 177–180. MR 1658924 | Zbl 0934.03033
[7] Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press Ltd., Baldock, Hertfordshire 2001. MR 1856623 | Zbl 1048.03002
[8] Hungerford, T.: Algebra. Springer-Verlag 1974. MR 0600654 | Zbl 0293.12001
[9] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht 1998. MR 1900263
[10] Höhle, U.: Commutative, residuated $\ell $-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Math. Foundations of Fuzzy Set Theory (U. H$\ddot{o}$hle and E. P. Klement, eds.). Kluwer, Dordrecht 1995.
[11] Jenei, S., Baets, B. De: On the direct decomposability of t-norms on product lattices. Fuzzy Sets and Systems 139 (2003), 699–707. MR 2015162 | Zbl 1032.03022
[12] Karaçal, F., Sağıroğlu, Y.: Infinetely $\bigvee $-distributive t-norm on complete lattices and pseudo-complements. Fuzzy Sets and Systems 160 (2009), 32–43.
[13] Karaçal, F., Khadjiev, Dj.: $\bigvee $-distributive and infinitely $\bigvee $-distributive t-norms on complete lattice. Fuzzy Sets and Systems 151 (2005), 341–352. MR 2124884
[14] Karaçal, F.: On the direct decomposability of strong negations and S-implication operators on product lattices. Inform. Sci. 176 (2006), 3011–3025. DOI 10.1016/j.ins.2005.12.010 | MR 2247614 | Zbl 1104.03016
[15] P.Klement, E.: Operations on fuzzy sets-an axiomatic approach. Inform. Sci. 27 (1982), 221–232. DOI 10.1016/0020-0255(82)90026-3 | MR 0689642 | Zbl 0515.03036
[16] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1010.03046
[17] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: A study in system modeling with triangular norms and uninorms. Fuzzy Sets and Systems 160 (2009), 3475–3502. MR 2563300 | Zbl 1185.68546
[18] Maes, K. C., Mesiarová-Zemánková, A.: Cancellativity properties for t-norms and t-subnorms. Inform. Sci. 179 (2009), 1221–1233. DOI 10.1016/j.ins.2008.11.035 | MR 2501780 | Zbl 1162.03013
[19] Mesiarová, A.: H-transformation of t-norms. Inform. Sci. 176 (2006), 1531–1545. DOI 10.1016/j.ins.2005.03.011 | MR 2225327 | Zbl 1094.03040
[20] Mitsch, H.: A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384–388. DOI 10.1090/S0002-9939-1986-0840614-0 | MR 0840614 | Zbl 0596.06015
[21] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1403–1416. MR 2226983 | Zbl 1099.06004
[22] Saminger-Platz, S., Klement, E. P., Mesiar, R.: On extensions of triangular norms on bounded lattices. Indag. Math. 19 (2009), 135–150. DOI 10.1016/S0019-3577(08)80019-5 | MR 2466398
[23] Samuel, S.: Calculating the large N phase diagram in the fundamental-adjoint action lattice theory. Phys. Lett. 122 (1983), 287–289.
[24] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier, Amsterdam 1983. MR 0790314 | Zbl 0546.60010
[25] Wang, Z.: T-filters of integral residuated $\ell $-monoids. Inform. Sci. 177 (2007), 887–896. DOI 10.1016/j.ins.2006.03.019 | MR 2287146
Partner of
EuDML logo