[1] Abdelkader, O., Saber, S.: 
Estimates for the $\bar{\partial}$-Neumann operator on strictly pseudo-convex domain with Lipschitz boundary. J. Inequal. Pure Appl. Math. 5 10 (2004). 
MR 2084879[2] Abdelkader, O., Saber, S.: 
The $\bar{\partial}$-Neumann operator on a strictly pseudo-convex domain with piecewise smooth boundary. Math. Slovaca 55 (2005), 317-328. 
MR 2181009[3] Ahn, H., Dieu, N. Q.: 
The Donnelly-Fefferman Theorem on $q$-pseudoconvex domains. Osaka J. Math. 46 (2009), 599-610. 
MR 2583320 | 
Zbl 1214.32015[4] Boas, H. P., Straube, E. J.: 
Global regularity of the $\bar{\partial}$-Neumann problem: A Survey of the $L^{2}$-Sobolev Theory, Several Complex Variables. MSRI Publications 37 (1999), 79-111. 
MR 1748601[5] Boas, H. P., Straube, E. J.: 
Sobolev estimates for the $\bar{\partial}$-Neumann operator on domains in $\Bbb{C}^{n}$ admitting a defining function that is plurisubharmonic on the boundary. Math. Z. 206 (1991), 81-88. 
DOI 10.1007/BF02571327 | 
MR 1086815[6] Bonami, A., Charpentier, P.: 
Boundary values for the canonical solution to $\bar{\partial}$-equation and $W^{1/2}$ estimates. Preprint, Bordeaux (1990). 
MR 1055987[8] Chen, S. C., Shaw, M. C.: 
Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI (2001). 
MR 1800297 | 
Zbl 0963.32001[12] Evans, L. E., Gariepy, R. F.: 
Measure theory and fine properties of functions. Stud. Adv. Math., CRC, Boca Raton (1992). 
MR 1158660 | 
Zbl 0804.28001[13] Folland, G. B., Kohn, J. J.: 
The Neumann problem for the Cauchy-Riemann complex. Ann. Math. Studies {\it 75}, Princeton University Press, New York, 1972. 
MR 0461588 | 
Zbl 0247.35093[14] Grisvard, P.: 
Elliptic problems in nonsmooth domains. Monogr. Stud. Math. Pitman, Boston 24 (1985). 
MR 0775683 | 
Zbl 0695.35060[15] Henkin, G., Iordan, A., Kohn, J. J.: 
Estimations sous-elliptiques pour le problème $\bar{\partial}$-Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 17-22. 
MR 1401622[17] Hörmander, L.: 
$L^{2}$-estimates and existence theorems for the $\bar{\partial}$-operator. Acta Math. 113 (1965), 89-152. 
DOI 10.1007/BF02391775 | 
MR 0179443[18] Kohn, J. J.: 
Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc. 181 (1973), 273-292. 
MR 0344703 | 
Zbl 0276.35071[21] Michel, J., Shaw, M.: 
Subelliptic estimates for the $\bar {\partial}$-Neumann operator on piecewise smooth strictly pseudoconvex domains. Duke Math. J. 93 (1998), 115-128. 
DOI 10.1215/S0012-7094-98-09304-8 | 
MR 1620087[22] Michel, J., Shaw, M.: 
The $\bar {\partial}$-Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions. Duke Math. J. 108 (2001), 421-447. 
DOI 10.1215/S0012-7094-01-10832-6 | 
MR 1838658[23] Stein, E. M.: 
Singular integrals and differentiability properties of functions. Princeton, Princeton Univ. Press Vol. 30 (1970). 
MR 0290095 | 
Zbl 0207.13501[24] Straube, E.: 
Plurisubharmonic functions and subellipticity of the $\bar{\partial}$-Neumann problem on nonsmooth domains. Math. Res. Lett. 4 (1997), 459-467. 
DOI 10.4310/MRL.1997.v4.n4.a2 | 
MR 1470417[25] Zampieri, G.: 
$q$-pseudoconvexity and regularity at the boundary for solutions of the $\bar\partial$-problem. Compositio Math. 121 (2000), 155-162. 
DOI 10.1023/A:1001811318865 | 
MR 1757879