Previous |  Up |  Next

Article

Title: Homogeneous systems of higher-order ordinary differential equations (English)
Author: Crampin, Mike
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 18
Issue: 1
Year: 2010
Pages: 37-50
Summary lang: English
.
Category: math
.
Summary: The concept of homogeneity, which picks out sprays from the general run of systems of second-order ordinary differential equations in the geometrical theory of such equations, is generalized so as to apply to equations of higher order. Certain properties of the geometric concomitants of a spray are shown to continue to hold for higher-order systems. Third-order equations play a special role, because a strong form of homogeneity may apply to them. The key example of a single third-order equation which is strongly homogeneous in this sense states that the Schwarzian derivative of the dependent variable vanishes. This equation is of importance in the theory of the association between third-order equations and pseudo-Riemannian manifolds due to Newman and his co-workers. (English)
MSC: 34A26
MSC: 34C14
MSC: 53A55
MSC: 53B15
MSC: 83C80
idZBL: Zbl 1244.34010
idMR: MR2848505
.
Date available: 2011-10-25T07:17:18Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/141671
.
Reference: [1] Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations.Mem. Amer. Math. Soc. 98 1992 No. 473 Zbl 0760.49021, MR 1115829
Reference: [2] de Andrés, L.C., de León, M., Rodrigues, P.R.: Canonical connections associated with regular Lagrangians of higher order.Geom. Dedicata 39 1991 17–28 MR 1116206
Reference: [3] Antonelli, P., Bucataru, I.: KCC theory of a system of second order differential equations.Handbook of Finsler Geometry Vol. 1 , Antonelli (ed.)Kluwer 2003 83–174 Zbl 1105.53017, MR 2066445
Reference: [4] Bucataru, I., Constantinescu, O., Dahl, M.F.: A geometric setting for systems of ordinary differential equations.preprint: arXiv:1011.5799 [math.DG]
Reference: [5] Crampin, M.: Connections of Berwald type.Publ. Math. Debrecen 57 2000 455–473 Zbl 0980.53031, MR 1798727
Reference: [6] Crampin, M., Sarlet, W., Cantrijn, F.: Higher-order differential equations and higher-order Lagrangian mechanics.Math. Proc. Cam. Phil. Soc. 99 1986 565–587 Zbl 0609.58049, MR 0830369, 10.1017/S0305004100064501
Reference: [7] Crampin, M., Saunders, D.J.: Affine and projective transformations of Berwald connections.Diff. Geom. Appl. 25 2007 235–250 Zbl 1158.53055, MR 2330452, 10.1016/j.difgeo.2007.02.001
Reference: [8] Crampin, M., Saunders, D.J.: On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant.Groups, Geometry and Physics , Clemente-Gallardo and Martínez (eds.)Monografía 29, Real Academia de Ciencias de Zaragoza 2007 79–92 MR 2288307
Reference: [9] Fritelli, S., Kozameh, C., Newman, E.T.: Differential geometry from differential equations.Comm. Math. Phys. 223 2001 383–408 MR 1864438, 10.1007/s002200100548
Reference: [10] Godliński, M., Nurowski, P.: Third order ODEs and four-dimensional split signature Einstein metrics.J. Geom. Phys. 56 2006 344–357 MR 2171889, 10.1016/j.geomphys.2005.01.011
Reference: [11] Godliński, M., Nurowski, P.: Geometry of third-order ODEs.preprint: arXiv:0902.4129v1 [math.DG]
Reference: [12] Saunders, D.J.: On the inverse problem for even-order ordinary differential equations in the higher-order calculus of variations.Diff. Geom. Appl. 16 2002 149–166 Zbl 1048.34019, MR 1893906, 10.1016/S0926-2245(02)00065-7
Reference: [13] Shen, Z.: Differential Geometry of Spray and Finsler Spaces.Kluwer 2001 Zbl 1009.53004, MR 1967666
.

Files

Files Size Format View
ActaOstrav_18-2010-1_4.pdf 348.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo