[1] Butcher, J. C.:
The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods. Wiley, Chichester, 1987.
MR 0878564
[2] Butcher, J. C.:
High Order A-stable Numerical Methods for Stiff Problems. Journal of Scientific Computing 25 (2005), 51–66.
MR 2231942 |
Zbl 1203.65106
[4] Butcher, J. C.:
Forty-five years of A-stability. In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008).
MR 2598780
[5] Butcher, J. C.:
Numerical Methods for Ordinary Differential Equations. sec. edi., Wiley, Chichester, 2008.
MR 2401398 |
Zbl 1167.65041
[11] Enright, W. H., Hull, T. E., Linberg, B.:
Comparing numerical Methods for Stiff of ODEs systems. BIT 15 (1975), 1–48.
DOI 10.1007/BF01932994
[12] Fatunla, S. O.: Numerical Methods for Initial Value Problems in ODEs. Academic Press, New York, 1978.
[13] Gear, C. W.:
The automatic integration of stiff ODEs. In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193.
MR 0260180
[15] Hairer, E., Wanner, G.:
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1996.
MR 1439506 |
Zbl 0859.65067
[17] Ikhile, M. N. O., Okuonghae, R. I.: Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs. J. Nig. Assoc. Math. Phys. 11 (2007), 175–190.
[18] Lambert, J. D.:
Numerical Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1991.
MR 1127425
[19] Lambert, J. D.:
Computational Methods for Ordinary Differential Systems. The Initial Value Problems. Wiley, Chichester, 1973.
MR 0423815
[20] Okuonghae, R. I.: Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs. Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008.