Previous |  Up |  Next

Article

Keywords:
algebras of generalized functions; manifold-valued generalized functions; full Colombeau algebras
Summary:
We introduce the notion of generalized function taking values in a smooth manifold into the setting of full Colombeau algebras. After deriving a number of characterization results we also introduce a corresponding concept of generalized vector bundle homomorphisms and, based on this, provide a definition of tangent map for such generalized functions.
References:
[1] Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, 75, Springer, New York, 1988. DOI 10.1007/978-1-4612-1029-0_8 | MR 0960687 | Zbl 0875.58002
[2] Clarke C.J.S., Vickers J.A., Wilson J.P.: Generalized functions and distributional curvature of cosmic strings. Classical Quantum Gravity 13 (1996), no. 9, 2485–2498. DOI 10.1088/0264-9381/13/9/013 | MR 1410817 | Zbl 0859.53074
[3] Colombeau J.-F.: New Generalized Functions and Multiplication of Distributions. North-Holland Mathematics Studies, 84, North-Holland, Amsterdam, 1984. MR 0738781 | Zbl 0761.46021
[4] Colombeau J.-F.: Elementary Introduction to New Generalized Functions. North-Holland Mathematics Studies, 113, North-Holland, Amsterdam, 1985. MR 0808961 | Zbl 0584.46024
[5] Colombeau J.-F., Meril A.: Generalized functions and multiplication of distributions on ${\mathcal C}^\infty$ manifolds. J. Math. Anal. Appl. 186 (1994), no. 2, 357–364. DOI 10.1006/jmaa.1994.1303 | MR 1292997
[6] Dapić N., Pilipović S.: Microlocal analysis of Colombeau's generalized functions on a manifold. Indag. Math. (N.S.) 7 (1996), no. 3, 293–309. DOI 10.1016/0019-3577(96)83722-0 | MR 1621385
[7] de Roever J.W., Damsma, M.: Colombeau algebras on a $C^\infty$-manifold. Indag. Math. (N.S.) 2 (1991), no. 3, 341–358. DOI 10.1016/0019-3577(91)90022-Y | MR 1149687
[8] Erlacher E., Grosser M.: Inversion of a “discontinuous coordinate transformation” in general relativity. Applicable Analysis(to appear). MR 2842608
[9] Grosser M., Farkas E., Kunzinger M., Steinbauer R.: On the foundations of nonlinear generalized functions I and II. Mem. Amer. Math. Soc. 153 (2001), no. 729. MR 1848157
[10] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: Geometric Theory of Generalized Functions with Applications to General Relativity. Kluwer, Dordrecht, 2001. Zbl 0998.46015
[11] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions. Adv. Math. 166 (2002), no. 1, 50–72. DOI 10.1006/aima.2001.2018 | MR 1882858 | Zbl 0995.46054
[12] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: A global theory of algebras of generalized functions II: tensor distributions. submitted, http://arxiv.org/abs/0902.1865
[13] Jelinek J.: An intrinsic definition of the Colombeau generalized functions. Comment. Math. Univ. Carolin. 45 (1999), no. 1, 71–95. MR 1715203 | Zbl 1060.46513
[14] Jelinek J.: Colombeau product of currents. Comment. Math. Univ. Carolin. 46 (2005), no. 3, 437–462. MR 2174523 | Zbl 1123.46025
[15] Kriegl A., Michor P.: The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997. MR 1471480 | Zbl 0889.58001
[16] Kunzinger M.: Generalized functions valued in a smooth manifold. Monatsh. Math. 137 (2002), 31–49. DOI 10.1007/s00605-002-0488-x | MR 1930994 | Zbl 1014.46054
[17] Kunzinger M., Steinbauer R.: Foundations of a nonlinear distributional geometry. Acta Appl. Math. 71 (2002), no. 2, 179–206. DOI 10.1023/A:1014554315909 | MR 1914741 | Zbl 1012.46048
[18] Kunzinger, M., Steinbauer, R., Vickers, J.A.: Intrinsic characterization of manifold-valued generalized functions. Proc. London Math. Soc. 87 (2003), no. 2, 451–470. MR 1990935 | Zbl 1042.46050
[19] Kunzinger M., Steinbauer R., Vickers J.A.: Sheaves of nonlinear generalized functions and manifold-valued distributions. Trans. Amer. Math. Soc. 361 (2009), 5177–5192. DOI 10.1090/S0002-9947-09-04621-2 | MR 2515808 | Zbl 1184.46070
[20] Marsden J.E.: Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics. Arch. Rational Mech. Anal. 28 (1967/1968), 323–361. MR 0224935 | Zbl 0155.51302
[21] Nedeljkov M., Pilipović S., Scarpalezos D.: The Linear Theory of Colombeau Generalized Functions. Pitman Research Notes in Mathematics, 385, Longman, Harlow, 1998. MR 1638310
[22] Nigsch E.: Approximation properties of local smoothing kernels. Integral Transform. Spec. Funct.(to appear). MR 2801281
[23] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations. Pitman Research Notes in Mathematics Series, 259, Longman Scientific & Technical, Harlow, 1992. MR 1187755 | Zbl 0818.46036
[24] O'Neill B.: Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023 | Zbl 0531.53051
[25] Parker P.E.: Distributional geometry. J. Math. Phys. 20 (1979), no. 7, 1423–1426. DOI 10.1063/1.524224 | MR 0538717 | Zbl 0442.53064
[26] Steinbauer R., Vickers J.A.: The use of generalized functions and distributions in general relativity. Classical Quantum Gravity 23 (2006), no. 10, R91–R114. DOI 10.1088/0264-9381/23/10/R01 | MR 2226026 | Zbl 1096.83001
[27] Vernaeve H.: Isomorphisms in algebras of Colombeau generalized functions. Monatsh. Math. 162 (2011), 225–237. DOI 10.1007/s00605-009-0152-9 | MR 2769888
[28] Vickers J., Wilson J.: A nonlinear theory of tensor distributions. ESI-Preprint 566 ( http://www.esi.ac.at/ESI-Preprints.html), 1998.
[29] Vickers J.A., Wilson J.P.: Invariance of the distributional curvature of the cone under smooth diffeomorphisms. Classical Quantum Gravity 16 (1999), no. 2, 579–588. DOI 10.1088/0264-9381/16/2/019 | MR 1672476 | Zbl 0933.83033
Partner of
EuDML logo