[3] Colombeau J.-F.: 
New Generalized Functions and Multiplication of Distributions. North-Holland Mathematics Studies, 84, North-Holland, Amsterdam, 1984. 
MR 0738781 | 
Zbl 0761.46021[4] Colombeau J.-F.: 
Elementary Introduction to New Generalized Functions. North-Holland Mathematics Studies, 113, North-Holland, Amsterdam, 1985. 
MR 0808961 | 
Zbl 0584.46024[5] Colombeau J.-F., Meril A.: 
Generalized functions and multiplication of distributions on ${\mathcal C}^\infty$ manifolds. J. Math. Anal. Appl. 186 (1994), no. 2, 357–364. 
DOI 10.1006/jmaa.1994.1303 | 
MR 1292997[8] Erlacher E., Grosser M.: 
Inversion of a “discontinuous coordinate transformation” in general relativity. Applicable Analysis(to appear). 
MR 2842608[9] Grosser M., Farkas E., Kunzinger M., Steinbauer R.: 
On the foundations of nonlinear generalized functions I and II. Mem. Amer. Math. Soc. 153 (2001), no. 729. 
MR 1848157[10] Grosser M., Kunzinger M., Oberguggenberger M., Steinbauer R.: 
Geometric Theory of Generalized Functions with Applications to General Relativity. Kluwer, Dordrecht, 2001. 
Zbl 0998.46015[12] Grosser M., Kunzinger M., Steinbauer R., Vickers J.A.: 
A global theory of algebras of generalized functions II: tensor distributions. submitted,  
http://arxiv.org/abs/0902.1865
[13] Jelinek J.: 
An intrinsic definition of the Colombeau generalized functions. Comment. Math. Univ. Carolin. 45 (1999), no. 1, 71–95. 
MR 1715203 | 
Zbl 1060.46513[14] Jelinek J.: 
Colombeau product of currents. Comment. Math. Univ. Carolin. 46 (2005), no. 3, 437–462. 
MR 2174523 | 
Zbl 1123.46025[15] Kriegl A., Michor P.: 
The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, 1997. 
MR 1471480 | 
Zbl 0889.58001[18] Kunzinger, M., Steinbauer, R., Vickers, J.A.: 
Intrinsic characterization of manifold-valued generalized functions. Proc. London Math. Soc. 87 (2003), no. 2, 451–470. 
MR 1990935 | 
Zbl 1042.46050[20] Marsden J.E.: 
Generalized Hamiltonian mechanics: A mathematical exposition of non-smooth dynamical systems and classical Hamiltonian mechanics. Arch. Rational Mech. Anal. 28 (1967/1968), 323–361. 
MR 0224935 | 
Zbl 0155.51302[21] Nedeljkov M., Pilipović S., Scarpalezos D.: 
The Linear Theory of Colombeau Generalized Functions. Pitman Research Notes in Mathematics, 385, Longman, Harlow, 1998. 
MR 1638310[22] Nigsch E.: 
Approximation properties of local smoothing kernels. Integral Transform. Spec. Funct.(to appear). 
MR 2801281[23] Oberguggenberger M.: 
Multiplication of distributions and applications to partial differential equations. Pitman Research Notes in Mathematics Series, 259, Longman Scientific & Technical, Harlow, 1992. 
MR 1187755 | 
Zbl 0818.46036[24] O'Neill B.: 
Semi-Riemannian Geometry. With Applications to Relativity. Pure and Applied Mathematics, 103, Academic Press, New York, 1983. 
MR 0719023 | 
Zbl 0531.53051