Previous |  Up |  Next

Article

Title: Ellipticity of the symplectic twistor complex (English)
Author: Krýsl, Svatopluk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 47
Issue: 4
Year: 2011
Pages: 309-327
Summary lang: English
.
Category: math
.
Summary: For a Fedosov manifold (symplectic manifold equipped with a symplectic torsion-free affine connection) admitting a metaplectic structure, we shall investigate two sequences of first order differential operators acting on sections of certain infinite rank vector bundles defined over this manifold. The differential operators are symplectic analogues of the twistor operators known from Riemannian or Lorentzian spin geometry. It is known that the mentioned sequences form complexes if the symplectic connection is of Ricci type. In this paper, we prove that certain parts of these complexes are elliptic. (English)
Keyword: Fedosov manifolds
Keyword: Segal-Shale-Weil representation
Keyword: Kostant’s spinors
Keyword: elliptic complexes
MSC: 22E46
MSC: 53C07
MSC: 53C80
MSC: 58J05
idZBL: Zbl 1249.22009
idMR: MR2876952
.
Date available: 2011-12-16T15:19:55Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/141778
.
Reference: [1] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Second edition.cond edition, Math. Surveys Monogr. 67 (2000), xviii+260 pp. MR 1721403
Reference: [2] Branson, T.: Stein-Weiss operators and ellipticity.J. Funct. Anal. 151 (2) (1997), 334–383. Zbl 0904.58054, MR 1491546, 10.1006/jfan.1997.3162
Reference: [3] Cahen, M., Schwachhöfer, L.: Special symplectic connections.J. Differential Geom. 83 (2) (2009), 229–271. Zbl 1190.53019, MR 2577468
Reference: [4] Casselman, W.: Canonical extensions of Harish–Chandra modules to representations of $G$.Canad. J. Math. 41 (3) (1989), 385–438. Zbl 0702.22016, MR 1013462, 10.4153/CJM-1989-019-5
Reference: [5] Fedosov, B.: A simple geometrical construction of deformation quantization.J. Differential Geom. 40 (2) (1994), 213–238. Zbl 0812.53034, MR 1293654
Reference: [6] Gelfand, I., Retakh, V., Shubin, M.: Fedosov manifolds.Adv. Math. 136 (1) (1998), 104–140. Zbl 0945.53047, MR 1623673, 10.1006/aima.1998.1727
Reference: [7] Green, M. B., Hull, C. M.: Covariant quantum mechanics of the superstring.Phys. Lett. B 225 (1989), 57–65. MR 1006387, 10.1016/0370-2693(89)91009-5
Reference: [8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators.Lecture Notes in Math., vol. 1887, Springer-Verlag, Berlin, 2006. Zbl 1102.53032, MR 2252919, 10.1007/978-3-540-33421-7_4
Reference: [9] Hotta, R.: Elliptic complexes on certain homogeneous spaces.Osaka J. Math. 7 (1970), 117–160. Zbl 0197.47703, MR 0265519
Reference: [10] Howe, R.: Remarks on classical invariant theory.Trans. Amer. Math. Soc. 313 (2) (1989), 539–570. Zbl 0674.15021, MR 0986027, 10.1090/S0002-9947-1989-0986027-X
Reference: [11] Kostant, B.: Symplectic Spinors.Symposia Mathematica, vol. XIV, Cambridge Univ. Press, 1974, pp. 139–152. Zbl 0321.58015, MR 0400304
Reference: [12] Krýsl, S.: Howe duality for metaplectic group acting on symplectic spinor valued forms.accepted in J. Lie Theory.
Reference: [13] Krýsl, S.: Symplectic spinor forms and the invariant operators acting between them.Arch. Math. (Brno) 42 (Supplement) (2006), 279–290. MR 2322414
Reference: [14] Krýsl, S.: A complex of symplectic twistor operators in symplectic spin geometry.Monatsh. Math. 161 (4) (2010), 381–398. MR 2734967, 10.1007/s00605-009-0158-3
Reference: [15] Schmid, W.: Homogeneous complex manifolds and representations of semisimple Lie group.Representation theory and harmonic analysis on semisimple Lie groups. (Sally, P., Vogan, D., eds.), vol. 31, American Mathematical Society, Providence, Rhode-Island, Mathematical Surveys and Monographs, 1989. MR 1011899
Reference: [16] Shale, D.: Linear symmetries of free boson fields.Trans. Amer. Math. Soc. 103 (1962), 149–167. Zbl 0171.46901, MR 0137504, 10.1090/S0002-9947-1962-0137504-6
Reference: [17] Stein, E., Weiss, G.: Generalization of the Cauchy–Riemann equations and representations of the rotation group.Amer. J. Math. 90 (1968), 163–196. Zbl 0157.18303, MR 0223492, 10.2307/2373431
Reference: [18] Tondeur, P.: Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer Struktur.Comment. Math. Helv. 36 (1961), 234–244. MR 0138068, 10.1007/BF02566901
Reference: [19] Vaisman, I.: Symplectic Curvature Tensors.Monatshefte für Math., vol. 100, Springer-Verlag, Wien, 1985, pp. 299–327. MR 0814206
Reference: [20] Weil, A.: Sur certains groups d’opérateurs unitaires.Acta Math. 111 (1964), 143–211. MR 0165033, 10.1007/BF02391012
Reference: [21] Wells, R.: Differential analysis on complex manifolds.Grad. Texts in Math., vol. 65, Springer, New York, 2008. Zbl 1131.32001, MR 2359489, 10.1007/978-0-387-73892-5
.

Files

Files Size Format View
ArchMathRetro_047-2011-4_7.pdf 573.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo