[1] Albano P., Cannarsa P.: 
Singularities of semiconcave functions in Banach spaces. in: Stochastic Analysis, Control, Optimization and Applications, W.M. McEneaney, G.G. Yin, Q. Zhang (eds.), Birkhäuser, Boston, 1999, pp. 171–190. 
MR 1702959 | 
Zbl 0923.49010[4] Cannarsa P., Sinestrari C.: 
Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, MA, 2004. 
MR 2041617 | 
Zbl 1095.49003[5] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces. submitted.
[6] Ioffe A.D.: 
Typical convexity (concavity) of Dini-Hadamard upper (lower) directional derivatives of functions on separable Banach spaces. J. Convex Anal. 17 (2010), 1019–1032. 
MR 2731290 | 
Zbl 1208.46043[8] Nagai H.V., Luc D.T., Théra M.: 
Approximate convex functions. J. Nonlinear Convex Anal. 1 (2000), 155–176. 
MR 1777137[9] Nekvinda A., Zajíček L.: 
Gâteaux differentiability of Lipschitz functions via directional derivatives. Real Anal. Exchange 28 (2002-2003), 287–320. 
MR 2009756[10] Pavlica D.: 
On the points of non-differentiability of convex functions. Comment. Math. Univ. Carolin. 45 (2004), 727–734. 
MR 2103086 | 
Zbl 1100.26006[11] Preiss D.: 
Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls. Collection: Geometry of Banach spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge University Press, Cambridge, 1990, pp. 237–244. 
MR 1110199 | 
Zbl 0758.46034[12] Zajíček L.: 
On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979), 340–348. 
MR 0536060[13] Zajíček L.: 
Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czechoslovak Math. J. 33 (108) (1983), 292–308. 
MR 0699027