Previous |  Up |  Next

Article

Keywords:
reaction-diffusion system; unilateral condition; variational inequality; local bifurcation; variational approach; spatial patterns
Summary:
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential operator, and a variational approach is used in a certain non-direct way.
References:
[1] Baltaev, J. I., Kučera, M.: Global bifurcation for quasivariational inequalities of reaction-diffusion type. J. Math. Anal. Appl. 345 (2008), 917-928. DOI 10.1016/j.jmaa.2008.04.056 | MR 2429191 | Zbl 1145.49004
[2] Drábek, P., Kučera, M., Míková, M.: Bifurcation points of reaction-diffusion systems with unilateral conditions. Czech. Math. J. 35 (1985), 639-660. MR 0809047 | Zbl 0604.35042
[3] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter Berlin (1997). MR 1460729 | Zbl 0894.35002
[4] Edelstein-Keshet, L.: Mathematical Models in Biology. McGraw-Hill Boston (1988). MR 1010228 | Zbl 0674.92001
[5] Eisner, J.: Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions. Nonlinear Anal., Theory Methods Appl. 46 (2001), 69-90. DOI 10.1016/S0362-546X(99)00446-0 | MR 1845578 | Zbl 0980.35029
[6] Eisner, J., Kučera, M.: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions. Fields Institute Communications 25 (2000), 239-256. MR 1759546 | Zbl 0969.35019
[7] Eisner, J., Kučera, M., Recke, L.: Smooth continuation of solutions and eigenvalues for variational inequalities based on the implicit function theorem. J. Math. Anal. Appl. 274 (2002), 159-180. DOI 10.1016/S0022-247X(02)00273-1 | MR 1936692 | Zbl 1040.49006
[8] Eisner, J., Kučera, M., Recke, L.: Direction and stability of bifurcating branches for variational inequalities. J. Math. Anal. Appl. 301 (2005), 276-294. DOI 10.1016/j.jmaa.2004.07.021 | MR 2105671
[9] Eisner, J., Kučera, M., Väth, M.: Global bifurcation for a reaction-diffusion system with inclusions. J. Anal. Anwend. 28 (2009), 373-409. DOI 10.4171/ZAA/1390 | MR 2550696 | Zbl 1182.35025
[10] Fučík, S., Kufner, A.: Nonlinear Differential Equations. Elsevier Amsterdam-Oxford-New York (1980). MR 0558764
[11] Jones, D. S., Sleeman, B. D.: Differential Equations and Mathematical Biology. Chapman & Hall/CRC Boca Raton (2003). MR 1967145 | Zbl 1020.92001
[12] Kučera, M.: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities. Czech. Math. J. 47 (1997), 469-486. DOI 10.1023/A:1022411501260 | MR 1461426 | Zbl 0898.35010
[13] Kučera, M., Recke, L., Eisner, J.: Smooth bifurcation for variational inequalities and reaction-diffusion systems. Progresses in Analysis J. G. W. Begehr, R. P. Gilbert, M. W. Wong World Scientific Singapore-New Jersey-London-Hong Kong (2001), 1125-1133. MR 2032793
[14] Miersemann, E.: Verzweigungsprobleme für Variationsungleichungen. Math. Nachr. 65 (1975), 187-209 German. DOI 10.1002/mana.19750650118 | MR 0387843 | Zbl 0324.49035
[15] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems. Ann. New York Acad. Sci. 316 (1979), 490-510. DOI 10.1111/j.1749-6632.1979.tb29492.x | MR 0556853 | Zbl 0437.92027
[16] Murray, J. D.: Mathematical Biology, 2nd ed. Springer Berlin (1993). MR 1007836 | Zbl 0779.92001
[17] Nishiura, Y.: Global structure of bifurcating solutions of some reaction-diffusion systems and their stability problem. Proceedings of the 5th Int. Symp. Computing Methods in Applied Sciences and Engineering, Versailles, France, 1981 R. Glowinski, J. L. Lions North-Holland Amsterdam-New York-Oxford (1982). MR 0784643 | Zbl 0505.76103
[18] Quittner, P.: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. J. Reine Angew. Math. 380 (1987), 1-13. MR 0916198 | Zbl 0617.35053
[19] Recke, L., Eisner, J., Kučera, M .: Smooth bifurcation for variational inequalities based on the implicit function theorem. J. Math. Anal. Appl. 275 (2002), 615-641. DOI 10.1016/S0022-247X(02)00272-X | MR 1943769 | Zbl 1018.34042
[20] Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer New York-Heidelberg-Berlin (1983). MR 0688146 | Zbl 0508.35002
[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. II/A. Springer New York-Berlin-Heidelberg (1990).
[22] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. III. Springer New York-Berlin-Heidelberg (1985). MR 0768749
[23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. IV. Springer New York-Berlin-Heidelberg (1988). MR 0932255
Partner of
EuDML logo