[1] Aubin, J.-P., Cellina, A.: 
Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin (1984). 
MR 0755330 | 
Zbl 0538.34007[2] Benamara, M.: "Point Extrémaux, Multi-applications et Fonctionelles Intégrales". Thése de 3éme Cycle, Université de Grenoble (1975).
[9] Klein, E., Thompson, A.: 
Theory of Correspondences. Including Applications to Mathematical Economic. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. New York, John Wiley & Sons (1984). 
MR 0752692[11] Tolstonogov, A. A.: 
Extremal selections of multivalued mappings and the "bang-bang" principle for evolution inclusions. Sov. Math. Dokl. 43 (1991), 481-485  Translation from Dokl. Akad. Nauk SSSR 317 (1991), 589-593. 
MR 1121349 | 
Zbl 0784.54024[14] Papageorgiou, N. S.: 
On measurable multifunction with applications to random multivalued equations. Math. Jap. 32 (1987), 437-464. 
MR 0914749[15] Ricceri, O. N., Ricceri, B.: 
An existence theorem for inclusions of the type $\Psi (u)(t) \in F(t, \Phi (u)(t))$ and an application to a multivalued boundary value problem. Appl. Anal. 38 (1990), 259-270. 
DOI 10.1080/00036819008839966 | 
MR 1116184