[1] Blum, E., Oettli, W.: 
From optimization and variational inequalities to equilibrium problems. Math. Student 63 (1994), 123–145. 
MR 1292380 | 
Zbl 0888.49007[4] Combettes, P. L., Hirstoaga, S. A.: 
Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6 (1) (2005), 117–136. 
MR 2138105 | 
Zbl 1109.90079[5] Goebel, K., Kirk, W. A.: 
Topics on Metric Fixed–Point Theory. Cambridge University Press, 1990. 
MR 1074005[6] Haugazeau, Y.: Surles in équations variationnelles et la minimisation de fonctionnelles convexes, Thèse. Master's thesis, Université de Paris, 1968.
[7] Korpelevich, G. M.: 
An extragradient method for finding saddle points and for other problems. Ékonom. i Mat. Metody 12 (940) (1976), 747–756, Russian. 
MR 0451121[8] Kumam, P.: 
Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space. Turkish J. Math. 33 (1) (2009), 85–98. 
MR 2524118 | 
Zbl 1223.47083[9] Liu, F., Nashed, M. Z., Takahashi, W.: 
Regularization of nonlinear ill–posed variational inequalities and convergence rates. Set–Valued Anal. 6 (1998), 313–344. 
MR 1690160[12] Plubtieng, S., Punpaeng, R.: 
A new iterative method for equilibrium problems 3 and fixed point problems of nonexpansive mappings and 4 monotone mappings. Appl. Math. Comput. (2007). 
DOI 10.1016/j.amc.2007.07.075[13] Su, Y. et al.,: 
An iterative method of solution for equilibrium and optimization problems. Nonlinear Anal. (2007). 
DOI 10.1016/j.na.2007.08.045[17] Verma, R. U.: 
On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot–Line 3 (8) (1999), 65–68. 
MR 1717779 | 
Zbl 0970.49011[18] Verma, R. U.: 
Iterative algorithms and a new system of nonlinear quasivariational inequalities. Adv. Nonlinear Var. Inequal. 4 (1) (2001), 117–127. 
MR 1801652 | 
Zbl 1014.47050[20] Yao, J–C., Chadli, O.: 
Handbook of Generalized Convexity and Monotonicity. ch. Pseudomonotone complementarity problems and variational inequalities, pp. 501–558, Springer, Netherlands, 2005. 
MR 2098908[21] Yao, Y., C., Liou Y., Yao, J.–C.: 
An extragradient method for fixed point problems and variational inequality problems. Journal of Inequalities and Applications 2007 (2007), 12, article ID 38752. 
DOI 10.1155/2007/38752 | 
MR 2291644 | 
Zbl 1137.47057[23] Zeng, L. C., Wong, N. C., Yao, J.–C.: 
Strong convergence theorems for strictly pseudocontractive mapping of Browder–Petryshyn type. Taiwanese J. Math. 10 (4) (2006), 837–849. 
MR 2229625[24] Zeng, L. C., Yao, J.–C.: 
Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 10 (2006), 1293–1303. 
MR 2253379 | 
Zbl 1110.49013