Previous |  Up |  Next

Article

Title: An elementary proof of a congruence by Skula and Granville (English)
Author: Meštrović, Romeo
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 113-120
Summary lang: English
.
Category: math
.
Summary: Let $p\ge 5$ be a prime, and let $q_p(2):=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. The following curious congruence was conjectured by L. Skula and proved by A. Granville \[ q_p(2)^2\equiv -\sum _{k=1}^{p-1}\frac{2^k}{k^2}\quad(\operatorname{mod} p)\,. \] In this note we establish the above congruence by entirely elementary number theory arguments. (English)
Keyword: congruence
Keyword: Fermat quotient
Keyword: harmonic numbers
MSC: 05A10
MSC: 11A07
MSC: 11B65
idMR: MR2946211
DOI: 10.5817/AM2012-2-113
.
Date available: 2012-06-08T08:33:03Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142825
.
Reference: [1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli.J. Number Theory 66 (1997), 29–50. Zbl 0884.11003, MR 1467188, 10.1006/jnth.1997.2162
Reference: [2] Cao, H. Q., Pan, H.: A congruence involving product of $q$–binomial coefficients.J. Number Theory 121 (2006), 224–233. MR 2274904, 10.1016/j.jnt.2006.02.004
Reference: [3] Ernvall, R., Metsänkylä, T.: On the $p$–divisibility of Fermat quotients.Math. Comp. 66 (1997), 1353–1365. Zbl 0903.11002, MR 1408373, 10.1090/S0025-5718-97-00843-0
Reference: [4] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression.Quart. J. Math. 32 (1900), 271–288.
Reference: [5] Granville, A.: Some conjectures related to Fermat’s Last Theorem.Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177–192. Zbl 0702.11015, MR 1106660
Reference: [6] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers.Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. Zbl 0903.11005, MR 1483922
Reference: [7] Granville, A.: The square of the Fermat quotient.Integers 4 (2004), # A22. Zbl 1083.11005, MR 2116007
Reference: [8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Clarendon Press, Oxford, 1960. Zbl 0086.25803
Reference: [9] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. (1938), 350–360. Zbl 0019.00505, MR 1503412
Reference: [10] Ribenboim, P.: 13 lectures on Fermat’s last theorem.Springer–Verlag, New York, Heidelberg, Berlin, 1979. Zbl 0456.10006, MR 0551363
Reference: [11] Slavutsky, I. Sh.: Leudesdorf’s theorem and Bernoulli numbers.Arch. Math. 35 (1999), 299–303.
Reference: [12] Sun, Z. H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials.Discrete Appl. Math. 105 (1–3) (2000), 193–223. Zbl 0990.11008, MR 1780472, 10.1016/S0166-218X(00)00184-0
Reference: [13] Sun, Z. W.: Arithmetic theory of harmonic numbers.Proc. Amer. Math. Soc. 140 (2012), 415–428. MR 2846311, 10.1090/S0002-9939-2011-10925-0
Reference: [14] Tauraso, R.: Congruences involving alternating multiple harmonic sums.Electron. J. Comb. 17 (2010), # R16. Zbl 1222.11006, MR 2587747
Reference: [15] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. Pure Appl. Math. 5 (1862), 35–39.
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_4.pdf 450.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo