Previous |  Up |  Next

Article

Title: Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$ (English)
Author: Wei, Yangjiang
Author: Nan, Jizhu
Author: Tang, Gaohua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 527-539
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {Z}_n{\rm [i]}$ be the ring of Gaussian integers modulo $n$. We construct for $\mathbb {Z}_n{\rm [i]}$ a cubic mapping graph $\Gamma (n)$ whose vertex set is all the elements of\/ $\mathbb {Z}_n{\rm [i]}$ and for which there is a directed edge from $a \in \mathbb {Z}_n{\rm [i]}$ to $b \in \mathbb {Z}_n{\rm [i]}$ if $ b = a^3$. This article investigates in detail the structure of $\Gamma (n)$. We give suffcient and necessary conditions for the existence of cycles with length $t$. The number of $t$-cycles in $\Gamma _1(n)$ is obtained and we also examine when a vertex lies on a $t$-cycle of $\Gamma _2(n)$, where $\Gamma _1(n)$ is induced by all the units of $\mathbb {Z}_n{\rm [i]}$ while $\Gamma _2(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n{\rm [i]}$. In addition, formulas on the heights of components and vertices in $\Gamma (n)$ are presented. (English)
Keyword: cubic mapping graph
Keyword: cycle
Keyword: height
MSC: 05C05
MSC: 11A07
MSC: 13M05
idZBL: Zbl 1261.05037
idMR: MR2990192
DOI: 10.1007/s10587-012-0027-4
.
Date available: 2012-06-08T09:51:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142844
.
Reference: [1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings.Commentat. Math. Univ. Carol. 47 (2006), 1-10. MR 2223962
Reference: [2] Cross, J. T.: The Euler $\varphi$-function in the Gaussian integers.Am. Math. Mon. 90 (1983), 518-528. MR 0717096, 10.2307/2322785
Reference: [3] Meemark, Y., Wiroonsri, N.: The quadratic digraph on polynomial rings over finite fields.Finite Fields Appl. 16 (2010), 334-346. MR 2678622
Reference: [4] Somer, L., Křížek, M.: Structure of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174-2185. MR 2255611, 10.1016/j.disc.2005.12.026
Reference: [5] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k \equiv y\pmod n$.Discrete Math. 309 (2009), 1999-2009. MR 2510326, 10.1016/j.disc.2008.04.009
Reference: [6] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb{Z}_n[i]$.J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.
Reference: [7] Tang, G. H., Su, H. D., Yi, Z.: Structure of the unit group of $\mathbb{Z}_n[i]$.J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41 Chinese.
Reference: [8] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers.Ars Combin. 97 (2010), 101-110 \MR 2732885. MR 2732885
Reference: [9] Wei, Y. J., Nan, J. Z., Tang, G. H.: The cubic mapping graph for the ring of Gaussian integers modulo $n$.Czech. Math. J. 61 (2011), 1023-1036. MR 2886254, 10.1007/s10587-011-0045-7
.

Files

Files Size Format View
CzechMathJ_62-2012-2_15.pdf 296.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo