Previous |  Up |  Next

Article

Keywords:
graph; adjacency matrix; Laplacian matrix; spectral radius; bound
Summary:
Let $G$ be a simple connected graph of order $n$ with degree sequence $(d_1,d_2,\ldots ,d_n)$. Denote $(^\alpha t)_i = \sum \nolimits _{j\colon i \sim j} {d_j^\alpha }$, $(^\alpha m)_i = {(^\alpha t)_i }/{d_i^\alpha }$ and $(^\alpha N)_i = \sum \nolimits _{j\colon i \sim j} {(^\alpha t)_j }$, where $\alpha $ is a real number. Denote by $\lambda _1(G)$ and $\mu _1(G)$ the spectral radius of the adjacency matrix and the Laplacian matrix of $G$, respectively. In this paper, we present some upper and lower bounds of $\lambda _1(G)$ and $\mu _1(G)$ in terms of $(^\alpha t)_i $, $(^\alpha m)_i $ and $(^\alpha N)_i $. Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
References:
[1] Berman, A., Zhang, X.-D.: On the spectral radius of graphs with cut vertices. J. Combin. Theory, Ser. B 83 (2001), 233-240. DOI 10.1006/jctb.2001.2052 | MR 1866719 | Zbl 1023.05098
[2] Brankov, V., Hansen, P., Stevanović, D.: Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs. Linear Algebra Appl. 414 (2006), 407-424. MR 2213408
[3] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application. Deutscher Verlag der Wissenschaften Berlin (1980). MR 0572262 | Zbl 0458.05042
[4] Das, K. C., Kumar, P.: Some new bounds on the spectral radius of graphs. Discrete Math. 281 (2004), 149-161. DOI 10.1016/j.disc.2003.08.005 | MR 2047763 | Zbl 1042.05060
[5] Favaron, O., Mahéo, M., Saclé, J.-F.: Some eigenvalue properties in graphs (Conjectures of Graffiti---II). Discrete Math. 111 (1993), 197-220. DOI 10.1016/0012-365X(93)90156-N | MR 1210097 | Zbl 0785.05065
[6] Hofmeister, M.: Spectral radius and degree sequence. Math. Nachr. 139 (1988), 37-44. DOI 10.1002/mana.19881390105 | MR 0978106 | Zbl 0695.05046
[7] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees. Discrete Math. 296 (2005), 187-197. DOI 10.1016/j.disc.2005.04.001 | MR 2154712 | Zbl 1068.05044
[8] Liu, H., Lu, M.: Bounds for the Laplacian spectral radius of graphs. Linear Multilinear Algebra 58 (2010), 113-119. DOI 10.1080/03081080802450021 | MR 2641527 | Zbl 1217.05148
[9] Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs. J. Math. Chem. 41 (2007), 45-57. DOI 10.1007/s10910-006-9183-9 | MR 2305216 | Zbl 1110.92070
[10] Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475. DOI 10.1016/j.jmaa.2006.03.072 | MR 2280998 | Zbl 1113.15016
[11] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs. Linear Algebra Appl. 422 (2007), 755-770. DOI 10.1016/j.laa.2006.12.003 | MR 2305155 | Zbl 1113.05065
[12] Tian, G.-X., Huang, T.-Z., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear Algebra Appl. 430 (2009), 2503-2510. MR 2508309 | Zbl 1165.05020
[13] Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs. Linear Algebra Appl. 387 (2004), 41-49. DOI 10.1016/j.laa.2004.01.020 | MR 2069267 | Zbl 1041.05051
[14] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs. MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. MR 2134203 | Zbl 1081.05067
[15] Zhou, B.: Energy of a graph. MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. MR 2063930 | Zbl 1106.05068
Partner of
EuDML logo