[1] Blair, D. E.: 
Contact manifolds in Riemannian geometry.  Lecture Notes in Mathematics 509, Springer, Berlin, 1976. 
MR 0467588 | 
Zbl 0319.53026[2] Cartan, E.: 
Sur une classe remarquable d’espaces de Riemannian.  Bull. Soc. Math. France 54 (1926), 214–264. 
MR 1504900[3] Chaki, M. C.: 
On pseudo-symmetric manifolds.  An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. 
MR 0925690 | 
Zbl 0634.53012[4] Chaki, M. C.: On generalized pseudo-symmetric manifolds.  Publ. Math. Debrecen 45 (1994), 305–312.
[5] De, U. C.: 
On $\phi $-symmetric Kenmotsu manifolds.  Int. Electronic J. Geom. 1, 1 (2008), 33–38. 
MR 2390388 | 
Zbl 1138.53029[6] De, U. C., Bandyopadhyay, S.: 
On weakly symmetric Riemannian spaces.  Publ. Math. Debrecen 54 (1999), 377–381. 
MR 1694492 | 
Zbl 0922.53018[8] Hui, S. K., Matsuyama, Y., Shaikh, A. A.: 
On decomposable weakly conformally symmetric manifolds.  Acta Math. Hungar. 128, 1-2 (2010), 82–95. 
MR 2665800 | 
Zbl 1224.53057[10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces.  Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).
[11] Mikeš, J.: 
Geodesic mappings of special Riemannian spaces.  In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. 
MR 0933875[13] Mikeš, J., Tolobaev, O. S.: 
Symmetric and projectively symmetric affinely connected spaces.  Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). 
MR 1165335[14] Oubiña, J. A.: 
New classes of almost contact metric structures.  Publ. Math. Debrecen 32 (1985), 187–193. 
MR 0834769 | 
Zbl 0611.53032[15] Özgür, C.: 
On weakly symmetric Kenmotsu manifolds.  Diff. Geom.-Dynamical Systems 8 (2006), 204–209. 
MR 2220726 | 
Zbl 1156.53309[16] Prvanović, M.: On weakly symmetric Riemmanian manifolds.  Publ. Math. Debrecen 46 (1995), 19–25.
[17] Roter, W.: 
On conformally symmetric Ricci recurrent space.  Colloq. Math. 31 (1974), 87–96. 
MR 0372768[18] Selberg, A.: 
Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.  J. Indian Math. Soc. 20 (1956), 47–87. 
MR 0088511 | 
Zbl 0072.08201[19] Shaikh, A. A., Hui, S. K.: 
On weakly conharmonically symmetric manifolds.  Tensor, N. S. 70 (2008), 119–134. 
MR 2546909 | 
Zbl 1193.53115[21] Shaikh, A. A., Hui, S. K.: 
On weakly concircular symmetric manifolds.  Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. 
MR 2510720 | 
Zbl 1199.53057[22] Shaikh, A. A., Hui, S. K.: 
On weakly projective symmetric manifolds.  Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. 
MR 2570946 | 
Zbl 1224.53039[23] Shaikh, A. A., Hui, S. K.: 
On weak symmetries of trans-Sasakian manifolds.  Proc. Estonian Acad. Sci. 58, 4 (2009), 213–223. 
MR 2604249 | 
Zbl 1185.53032[24] Shaikh, A. A., Jana, S. K.: 
On weakly symmetric Riemannian manifolds.  Publ. Math. Debrecen. 71 (2007), 27–41. 
MR 2340032 | 
Zbl 1136.53019[25] Shaikh, A. A., Jana, S. K.: 
On weakly quasi-conformally symmetric manifolds.  SUT. J. Math. 43, 1 (2007), 61–83. 
MR 2417157 | 
Zbl 1139.53008[26] Shukla, S. S., Shukla, M. K.: 
On $\phi $-Ricci symmetric Kenmotsu manifolds.  Novi Sad J. Math. 39, 2 (2009), 89–95. 
MR 2656183 | 
Zbl 1224.53063[27] Sinyukov, N. S.: 
Geodesic mappings of Riemannian spaces.  Nauka, Moscow, 1979, (in Russian). 
MR 0552022 | 
Zbl 0637.53020[28] Szabó, Z. I.: 
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, The local version.  J. Diff. Geom. 17 (1982), 531–582. 
MR 0683165[31] Tamássy, L., Binh, T. Q.: 
On weakly symmetric and weakly projective symmetric Riemannian manifolds.  Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. 
MR 1211691[32] Tamássy, L., Binh, T. Q.: 
On weak symmetrics of Einstein and Sasakian manifolds.  Tensor, N. S. 53 (1993), 140–148. 
MR 1455411[33] Walker, A. G.: 
On Ruses spaces of recurrent curvature.  Proc. London Math. Soc. 52 (1950), 36–64. 
MR 0037574