Previous |  Up |  Next

Article

Title: Pseudoautomorphisms of Bruck loops and their generalizations (English)
Author: Greer, Mark
Author: Kinyon, Michael
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 3
Year: 2012
Pages: 383-389
Summary lang: English
.
Category: math
.
Summary: We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha$ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck. (English)
Keyword: pseudoautomorphism
Keyword: Bruck loop
Keyword: weak commutative inverse property
MSC: 20N05
idZBL: Zbl 1256.20062
idMR: MR3017837
.
Date available: 2012-08-31T11:37:44Z
Last updated: 2014-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/142931
.
Reference: [1] Aschbacher M.: Bol loops of exponent $2$.J. Algebra 288 (2005), 99–136. Zbl 1090.20037, MR 2138373, 10.1016/j.jalgebra.2005.03.005
Reference: [2] Aschbacher M., Kinyon M.K., Phillips J.D.: Finite Bruck loops.Trans. Amer. Math. Soc. 358 (2006), 3061–3075. Zbl 1102.20046, MR 2216258, 10.1090/S0002-9947-05-03778-5
Reference: [3] Baumeister B., Stein A.: Self-invariant $1$-factorizations of complete graphs and finite Bol loops of exponent $2$.Beiträge Algebra Geom. 51 (2010), 117–135. Zbl 1208.20064, MR 2650481
Reference: [4] Baumeister B., Stroth G., Stein A.: On Bruck loops of $2$-power exponent.J. Algebra 327 (2011), 316–336. Zbl 1233.20059, MR 2746041, 10.1016/j.jalgebra.2010.10.033
Reference: [5] Baumeister B., Stein A.: The finite Bruck loops.J. Algebra 330 (2011), 206–220. Zbl 1235.20059, MR 2774625, 10.1016/j.jalgebra.2010.11.017
Reference: [6] Bruck R.H.: Pseudo-automorphisms and Moufang loops.Proc. Amer. Math. Soc. 3 (1952), 66–72. Zbl 0046.01803, MR 0047635, 10.1090/S0002-9939-1952-0047635-6
Reference: [7] Bruck R.H.: A Survey of Binary Systems.Springer, Berlin, 1971. Zbl 0141.01401, MR 0093552
Reference: [8] Glauberman G.: On loops of odd order I.J. Algebra 1 (1964), 374–396. MR 0175991, 10.1016/0021-8693(64)90017-1
Reference: [9] Johnson K.W., Sharma B.L.: A variety of loops.Ann. Soc. Sci. Bruxelles Sér. I 92 (1978), 25–41. Zbl 0381.20056, MR 0498926
Reference: [10] Kiechle H.: Theory of K-loops.Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276
Reference: [11] McCune W.W.: Prover9, version 2009-11A.http://www.cs.unm.edu/$\sim$mccune/prover9/.
Reference: [12] Nagy G.P.: A class of finite simple Bol loops of exponent $2$.Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR 2515813, 10.1090/S0002-9947-09-04646-7
Reference: [13] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Math., 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [14] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces.Fundamental Theories of Physics, 117, Kluwer, Dordrecht, 2001. Zbl 0972.83002, MR 1978122
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-3_5.pdf 293.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo