Previous |  Up |  Next

Article

Title: Smoothness for the collision local time of two multidimensional bifractional Brownian motions (English)
Author: Shen, Guangjun
Author: Yan, Litan
Author: Chen, Chao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 969-989
Summary lang: English
.
Category: math
.
Summary: Let $B^{H_{i},K_i}=\{B^{H_{i},K_i}_t, t\geq 0 \}$, $i=1,2$ be two independent, $d$-dimensional bifractional Brownian motions with respective indices $H_i\in (0,1)$ and $K_i\in (0,1]$. Assume $d\geq 2$. One of the main motivations of this paper is to investigate smoothness of the collision local time $$ \ell _T=\int _{0}^{T}\delta (B_{s}^{H_{1},K_1}-B_{s}^{H_{2},K_2}) {\rm d} s, \qquad T>0, $$ where $\delta $ denotes the Dirac delta function. By an elementary method we show that $\ell _T$ is smooth in the sense of Meyer-Watanabe if and only if $\min \{H_{1}K_1,H_{2}K_2\}<{1}/{(d+2)}$. (English)
Keyword: bifractional Brownian motion
Keyword: collision local time
Keyword: intersection local time
Keyword: chaos expansion
MSC: 60G15
MSC: 60G18
MSC: 60G22
MSC: 60J55
MSC: 60J65
idZBL: Zbl 1274.60119
idMR: MR3010251
DOI: 10.1007/s10587-012-0077-7
.
Date available: 2012-11-10T21:35:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143039
.
Reference: [1] An, L., Yan, L.: Smoothness for the collision local time of fractional Brownian motion.Preprint, 2010.
Reference: [2] Chen, C., Yan, L.: Remarks on the intersection local time of fractional Brownian motions.Stat. Probab. Lett. 81 (2011), 1003-1012. Zbl 1225.60062, MR 2803736, 10.1016/j.spl.2011.01.021
Reference: [3] Es-Sebaiy, K., Tudor, C. A.: Multidimensional bifractional Brownian motion: Itô and Tanaka formulas.Stoch. Dyn. 7 (2007), 365-388. Zbl 1139.60321, MR 2351043, 10.1142/S0219493707002050
Reference: [4] Houdré, Ch., Villa, J.: An example of infinite dimensional quasi-helix.Stochastic models. Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195-201. Zbl 1046.60033, MR 2037165, 10.1090/conm/336/06034
Reference: [5] Hu, Y.: Self-intersection local time of fractional Brownian motion - via chaos expansion.J. Math, Kyoto Univ. 41 (2001), 233-250. MR 1852981, 10.1215/kjm/1250517630
Reference: [6] Hu, Y.: Integral transformations and anticipative calculus for fractional Brownian motions.Mem. Am. Math. Soc. 825 (2005). Zbl 1072.60044, MR 2130224
Reference: [7] Jiang, Y., Wang, Y.: Self-intersection local times and collision local times of bifractional Brownian motions.Sci. China, Ser. A 52 (2009), 1905-1919. Zbl 1181.60059, MR 2544996, 10.1007/s11425-009-0081-z
Reference: [8] Kruk, I., Russo, F., Tudor, C. A.: Wiener integrals, Malliavin calculus and covariance measure structure.J. Funct. Anal. 249 (2007), 92-142. Zbl 1126.60046, MR 2338856, 10.1016/j.jfa.2007.03.031
Reference: [9] Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications.Stat. Probab. Lett. 79 (2009), 619-624. Zbl 1157.60313, MR 2499385, 10.1016/j.spl.2008.10.009
Reference: [10] Mishura, Y.: Stochastic Calculus for Fractional Brownian Motions and Related Processes.Lecture Notes in Mathematics 1929. Springer, Berlin (2008). MR 2378138
Reference: [11] Nualart, D., Ortiz-Latorre, S.: Intersection local time for two independent fractional Brownian motions.J. Theor. Probab. 20 (2007), 759-767. Zbl 1154.60028, MR 2359054, 10.1007/s10959-007-0106-x
Reference: [12] Nualart, D.: The Malliavin Calculus and Related Topics. 2nd ed.Probability and Its Applications. Springer, Berlin (2006). Zbl 1099.60003, MR 2200233
Reference: [13] Russo, F., Tudor, C. A.: On bifractional Brownian motion.Stochastic Processes Appl. 116 (2006), 830-856. Zbl 1100.60019, MR 2218338, 10.1016/j.spa.2005.11.013
Reference: [14] Shen, G., Yan, L.: Smoothness for the collision local times of bifractional Brownian motions.Sci. China, Math. 54 (2011), 1859-1873. Zbl 1236.60042, MR 2827020, 10.1007/s11425-011-4228-3
Reference: [15] Tudor, C. A., Xiao, Y.: Sample path properties of bifractional Brownian motion.Bernoulli 13 (2007), 1023-1052. Zbl 1132.60034, MR 2364225, 10.3150/07-BEJ6110
Reference: [16] Watanabe, S.: Lectures on Stochastic Differential Equations and Malliavin Calculus.Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin (1984). Zbl 0546.60054, MR 0742628
Reference: [17] Yan, L., Liu, J., Chen, C.: On the collision local time of bifractional Brownian motions.Stoch. Dyn. 9 (2009), 479-491. Zbl 1180.60034, MR 2566911, 10.1142/S0219493709002749
Reference: [18] Yan, L., Gao, B., Liu, J.: The Bouleau-Yor identity for a bi-fractional Brownian motion.(to appear) in Stochastics 2012.
.

Files

Files Size Format View
CzechMathJ_62-2012-4_8.pdf 326.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo