Previous |  Up |  Next

Article

Keywords:
Laplacian spectrum; signless Laplacian spectrum; complement graph
Summary:
Let $W_{n}=K_{1}\vee C_{n-1}$ be the wheel graph on $n$ vertices, and let $S(n,c,k)$ be the graph on $n$ vertices obtained by attaching $n-2c-2k-1$ pendant edges together with $k$ hanging paths of length two at vertex $v_{0}$, where $v_{0}$ is the unique common vertex of $c$ triangles. In this paper we show that $S(n,c,k)$ ($c\geq 1$, $k\geq 1$) and $W_{n}$ are determined by their signless Laplacian spectra, respectively. Moreover, we also prove that $S(n,c,k)$ and its complement graph are determined by their Laplacian spectra, respectively, for $c\geq 0$ and $k\geq 1$.
References:
[1] Borovićanin, B., Petrović, M.: On the index of cactuses with $n$ vertices. Publ. Inst. Math., Nouv. Sér. 79(93) (2006), 13-18. DOI 10.2298/PIM0693013B | MR 2275334
[2] Čvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. DOI 10.1016/j.laa.2007.01.009 | MR 2312332 | Zbl 1113.05061
[3] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian II. Linear Algebra Appl. 432 (2010), 2257-2272. MR 2599858 | Zbl 1218.05089
[4] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. MR 2022290
[5] Das, K. Ch.: The Laplacian spectrum of a graph. Comput. Math. Appl. 48 (2004), 715-724. DOI 10.1016/j.camwa.2004.05.005 | MR 2105246 | Zbl 1058.05048
[6] Das, K. Ch.: On conjectures involving second largest signless Laplacian eigenvalue of graphs. Linear Algebra Appl. 432 (2010), 3018-3029. DOI 10.1016/j.laa.2010.01.005 | MR 2639266 | Zbl 1195.05040
[7] Doob, M., Haemers, W. H.: The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002), 57-65. MR 1944676 | Zbl 1015.05047
[8] Du, Z. B., Liu, Z. Z.: On the Estrada and Laplacian Estrada indices of graphs. Linear Algebra Appl. 435 (2011), 2065-2076. DOI 10.1016/j.laa.2011.03.057 | MR 2810647 | Zbl 1221.05211
[9] Du, Z. B., Zhou, B.: Minimum on Wiener indices of trees and unicyclic graphs of the given matching number. MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. MR 2582967
[10] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(98) (1973), 298-305. MR 0318007 | Zbl 0265.05119
[11] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. MR 2202092 | Zbl 1082.05059
[12] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. MR 1344588 | Zbl 0831.05044
[13] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. MR 1344594
[14] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press XIII, Cambridge (1985). MR 0832183 | Zbl 0576.15001
[15] Ilić, A.: Trees with minimal Laplacian coefficients. Comput. Math. Appl. 59 (2010), 2776-2783. DOI 10.1016/j.camwa.2010.01.047 | MR 2607982 | Zbl 1193.05060
[16] Li, J. S., Pan, Y. L.: A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear Algebra 48 (2000), 117-121. DOI 10.1080/03081080008818663 | MR 1813439 | Zbl 0979.15016
[17] Li, S. C., Zhang, M. J.: On the signless Laplacian index of cacti with a given number of pendant vertices. Linear Algebra Appl. 436 (2012), 4400-4411. MR 2917417 | Zbl 1241.05082
[18] Liu, B. L.: Combinatorial Matrix Theory. Science Press, Beijing (2005), Chinese.
[19] Liu, H. Q., Lu, M.: A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem. 58 (2007), 183-194. MR 2335488 | Zbl 1164.05043
[20] Liu, M. H., Tan, X. Z., Liu, B. L.: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Czech. Math. J. 60 (2010), 849-867. DOI 10.1007/s10587-010-0053-z | MR 2672419 | Zbl 1224.05311
[21] Liu, M. H., Liu, B. L., Wei, F. Y.: Graphs determined by their (signless) Laplacian spectra. Electron. J. Linear Algebra 22 (2011), 112-124. MR 2781040 | Zbl 1227.05185
[22] Liu, X. G., Zhang, Y. P., Gui, X. Q.: The multi-fan graphs are determined by their Laplacian spectra. Discrete Math. 308 (2008), 4267-4271. DOI 10.1016/j.disc.2007.08.002 | MR 2427757 | Zbl 1225.05172
[23] Lotker, Z.: Note on deleting a vertex and weak interlacing of the Laplacian spectrum. Electron. J. Linear Algebra. 16 (2007), 68-72. DOI 10.13001/1081-3810.1183 | MR 2285833 | Zbl 1142.05342
[24] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. MR 1275613 | Zbl 0802.05053
[25] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295. MR 1930150 | Zbl 1015.05055
[26] Radosavljević, Z., sajski, M. Ra\u: A class of reflexive cactuses with four cycles. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 14 (2003), 64-85. MR 2076310
[27] Shen, X. L., Hou, Y. P.: A class of unicyclic graphs determined by their Laplacian spectrum. Electron. J. Linear Algebra. 23 (2012), 375-386. MR 2928565
[28] Yu, G. H., Feng, L. H., Ilić, A.: The hyper-Wiener index of trees with given parameters. Ars Comb. 96 (2010), 395-404. MR 2666825 | Zbl 1247.92068
[29] Zhang, X. L., Zhang, H. P.: Some graphs determined by their spectra. Linear Algebra Appl. 431 (2009), 1443-1454. DOI 10.1016/j.laa.2009.05.018 | MR 2555048 | Zbl 1169.05354
[30] Zhang, Y. P., Liu, X. G., Yong, X. R.: Which wheel graphs are determined by their Laplacian spectra?. Comput Math. Appl. 58 (2009), 1887-1890. DOI 10.1016/j.camwa.2009.07.028 | MR 2557510 | Zbl 1189.05111
[31] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 309 (2009), 3364-3369. DOI 10.1016/j.disc.2008.09.052 | MR 2526754 | Zbl 1182.05084
Partner of
EuDML logo