[1] Cīrulis, J.: 
Multipliers in implicative algebras.  Bull. Sect. Log. (Łódź) 15 (1986), 152–158. 
MR 0907610 | 
Zbl 0634.03067[2] Cīrulis, J.: 
Multipliers, closure endomorphisms and quasi-decompositions of a Hilbert algebra.  In: Chajda et al., I. (eds) Contrib. Gen. Algebra Verlag Johannes Heyn, Klagenfurt, 2005, 25–34. 
MR 2166943 | 
Zbl 1082.03056[5] Diego, A.: 
Sur les algèbres de Hilbert.  Gauthier-Villars; Nauwelaerts, Paris; Louvain, 1966. 
MR 0199086 | 
Zbl 0144.00105[7] Horn, A.: 
The separation theorem of intuitionistic propositional calculus.  Journ. Symb. Logic 27 (1962), 391–399. 
DOI 10.2307/2964545 | 
MR 0171706[9] Huang, W., Wang, D.: 
Adjoint semigroups of BCI-algebras.  Southeast Asian Bull. Math. 19 (1995), 95–98. 
MR 1366413 | 
Zbl 0859.06016[10] Iseki, K., Tanaka, S.: 
An introduction in the theory of BCK-algebras.  Math. Japon. 23 (1978), 1–26. 
MR 0500283[11] Karp, C. R.: Set representation theorems in implicative models.  Amer. Math. Monthly 61 (1954), 523–523 (abstract).
[12] Karp, C. R.: 
Languages with expressions of infinite length.  Univ. South. California, 1964 (Ph.D. thesis). 
MR 0176910 | 
Zbl 0127.00901[15] Schmidt, J.: 
Quasi-decompositions, exact sequences, and triple sums of semigroups I. General theory. II Applications.  In:Contrib. Universal Algebra Colloq. Math. Soc. Janos Bolyai (Szeged) 17 North-Holland, Amsterdam, 1977, 365–428. 
MR 0472657[16] Tsinakis, C.: 
Brouwerian semilattices determined by their endomorphism semigroups.  Houston J. Math. 5 (1979), 427–436. 
MR 0559982 | 
Zbl 0431.06003[17] Tsirulis, Ya. P.: 
Notes on closure endomorphisms of implicative semilattices.  Latvijskij Mat. Ezhegodnik 30 (1986), 136–149 (in Russian). 
MR 0878277