[1] Almond, R., Kong, A.: Optimality Issues in Constructing a Markov Tree from Graphical Models. Research Report A-3, Dept. Statistics, Harvard University, 1991.
[2] Altmüller, A., Haralick, R. M.: Approximating high dimensional probability disributions. In: Proc. XVII Int. Conf. on Patter Recognitions, 2004.
[3] Altmüller, A., Haralick, R. M.: Practical aspects of efficient forward selection in decomposable graphical models. In: Proc. XVI IEEE Int. Conf. on Tools with Artificial Intelligence, 2004, pp. 710-715.
[4] Bach, F. R., Jordan, M. I.: Thin junction trees. Adv. in Neural Inform. Proces. Systems 14 (2002), 569-572.
[7] Beineke, L. W., Pippert, R. E.:
The enumeration of labelled 2-trees. J. Combin. Theory 6 (1969), 200-205.
MR 0234868
[8] Bishop, Y., Fienberg, S. E., Holland, P. W.:
Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge 1975.
MR 0381130 |
Zbl 1131.62043
[10] Chickering, D.:
Learning Bayesian networks is NP-complete. In: Learning from Data, Lecture Notes in Statist. 112 (1996), 121-130.
MR 1473013
[13] Csiszár, I., Körner, J.:
Information Theory. Academic Press, 1981.
MR 0666545
[15] Dasgupta, S.: Learning polytrees. In: Proc. XV Conference on Uncertainty in Artificial Intelligence, 1999, pp. 134-141.
[16] Deshpande, A., Garofalakis, M., Jordan, M. I.: Efficient stepwise selection in decomposable models. In: Proc. XVII Conf. on Uncertainty in Artificial Intelligence, 2001, pp. 128-135.
[17] Ding, G., Lax, R. F., Chen, J., Chen, P. P., Marx, B. D.: Comparison of greedy strategies for learning Markov networks of treewidth $k$. In: Proc. Int. Conf. on Machine Learning: Models, Technologies and Applications, 2007, pp. 294-301.
[18] Havránek, T.: On model search methods. In: Proc. IX Symp. on Computational Statistics, 1990, pp. 101-108.
[19] Havránek, T.: Simple formal systems in data analysis. In: Proc. Conf. on Symbolic-Numeric Data Analysis and Learning, 1991, pp. 373-381.
[20] Jensen, F. V., Jensen, F.: Optimal junction trees. In: Proc. X Conf. on Uncertainty in Artificial Intelligence (R. L. de Mantaras and D. Poole, eds.), 1994, pp. 360-366.
[21] Karger, D., Srebro, N.:
Learning Markov networks: maximum bounded tree-width graphs. In: Proc. XII ACM-SIAM Symp. on Discrete Mathematics, 2001, pp. 392-401.
MR 1958431 |
Zbl 0987.68067
[22] Kloks, T.:
Tree-width. LNCS 842, Springer Verlag, Berlin 1994.
Zbl 0925.05052
[23] Kocka, T.: New algorithm for learning decomposable models. Unpublished manuscript, 2000.
[24] Kovács, E., Szántai, T.: Vine copulas as a mean for the construction of high dimensional probability distribution associated to a Markov network. arXiv:1105.1697v1, 2011.
[26] Lauritzen, S. L.:
Graphical Models. Clarendon Press, Oxford 1996.
MR 1419991
[28] Malvestuto, F. M.: Operations research in the design of statistical databases (in Italian). In: Proc. AIRO Meeting on Operations Research and Computer Science, 1986, pp. 117-130.
[29] Malvestuto, F. M.:
Approximating discrete probability distributions with decomposable models. IEEE Trans. Systems, Man and Cybernetics 21 (1991), 1287-1294.
DOI 10.1109/21.120082
[30] Malvestuto, F. M.: An axiomatization of loglinear models with an application to the model search. In: Learning from Data, LNS 112 (1996), pp. 175-184.
[31] Malvestuto, F. M.: Designing a probabilistic database from a given set of full conditional independences. In: Proc. Workshop on Conditional Independence Structures and Graphical Models, 1999.
[32] Malvestuto, F. M.:
A hypergraph-theoretic analysis of collapsibility and decomposability for extended log-linear models. Statist. Comput. 11 (2001), 155-169.
DOI 10.1023/A:1008979300007 |
MR 1837135
[34] Malvestuto, F. M.:
Tree and local computations in a cross-entropy minimization problem with marginal constraints. Kybernetika 46 (2010), 621-654.
MR 2722092 |
Zbl 1204.93113
[35] Meek, C.:
Finding a path is harder than finding a tree. J. Artificial Intelligence Res. 15 (2001), 383-389.
MR 1884083 |
Zbl 0994.68120
[37] Nunez, K., Chen, J., Chen, P., Ding, G., Lax, R. F., Marx, B.: Empirical comparison of greedy strategies for learning Markov networks of treewidth $k$. In: Proc. VII Int. Conf. on Machine Learning and Applications, 2008, pp. 106-113.
[39] Szántai, T., Kovács, E.:
Hypergraphs as a mean of discovering the dependence structure of a discrete multivariate probability distribution. In: Proc. Conf. on Applied Mathematical Programming and Modelling, 2008; also in Ann. Oper. Res. 193 (2012), 71-90.
MR 2874757
[40] Szántai, T., Kovács, E.: Discovering a junction tree behind a Markov network by a greedy algorithm. arXiv:1104.2762v3, 2011.
[41] Tarjan, R. E., Yannakakis, M.:
Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce hypergraphs. SIAM J. Comput. 13 (1984), 566-579.
DOI 10.1137/0213035 |
MR 0749707
[44] Xiang, Y., Wong, S. K. M., Cercone, N.:
A ``microscopic'' study of minimum entropy search in learning decomposable Markov networks. Mach. Learning 26 (1997), 65-72.
DOI 10.1023/A:1007324100110 |
Zbl 0866.68088