Previous |  Up |  Next

Article

Keywords:
directed complete poset; Scott topology; dcpo-completion; partial dcpo; C-space; lattice of continuous functions; lower semicontinuous functions; injective hull
Summary:
We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces $X$, the corresponding partial dcpo’s of continuous real valued functions on $X$ are continuous partial dcpos; (iii) if a space $X$ is Hausdorff compact, the lattice of all S-lower semicontinuous functions on $X$ is the dcpo-completion of that of continuous real valued functions on the space; (iv) a topological space has an injective hull iff it is homeomorphic to the pre-Scott space of a continuous partial dcpo whose way-below relation satisfies the interpolation property.
References:
[1] Banaschewski, B.: Essential extensions of $T_0$–spaces. General Topology and Appl. 7 (1977), 233–246. MR 0458354 | Zbl 0371.54026
[2] Bourbaki, N.: General Topology. vol. IX, Paris, 1948.
[3] Edalat, A., Heckmann, R.: A computational model for metric spaces. Theoret. Comput. Sci. 193 (1998), 53–73. DOI 10.1016/S0304-3975(96)00243-5 | MR 1600616 | Zbl 1011.54026
[4] Engelking, R.: General Topology. Polish Scientific Publisher, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[5] Erné, M.: The ABC of order and topology. Category Theory at Work (Herlich, H., Porst, H.-E., eds.), Heldermann Verlag, Berlin, 1991, pp. 57–83. MR 1147919 | Zbl 0735.18005
[6] Erné, M.: Minimal bases, ideal extensions, and basic dualities. Topology Proc. 29 (2005), 445–489. MR 2244484 | Zbl 1128.06001
[7] Erné, M.: Algebraic models for T1-spaces. Topology Appl. 158 (7) (2011), 945–967. MR 2783149
[8] Ershov, Yu. L.: Computable functionals of finite types. Algebra and Logic 11 (4) (1972), 367–437. MR 0360238 | Zbl 0285.02040
[9] Ershov, Yu. L.: On d–spaces. Theoret. Comput. Sci. 224 (1999), 59–72. DOI 10.1016/S0304-3975(98)00307-7 | MR 1714790 | Zbl 0976.54015
[10] Gierz, G., al., et: Continuous lattices and domains. Encyclopedia Math. Appl., vol. 93, Cambridge University Press, 2003. MR 1975381 | Zbl 1088.06001
[11] Hoffmann, R.: Continuous posets, prime spectra of completely distributive lattices and Hausdorff compactifications. Continuous Lattices, Lecture Notes in Math. 159 - 208., vol. 871, Springer–Verlag, 1981, pp. 159–208.
[12] Johnstone, P.: Scott is not always sober. Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 282–283. Zbl 0469.06002
[13] Johnstone, P.: Stone spaces. Cambridge University Press, 1982. MR 0698074 | Zbl 0499.54001
[14] Jung, A., Moshier, M. A., Vickers, S.: Presenting dcpos and dcpo algebras. Proceedings of the 24th Annual Conference on foundation of programming semantics, Electronic Notes in Theoretical Computer Science, vol. 218, 2008, pp. 209–229.
[15] Kamimura, T., Tang, A.: Total objects of domains. Theoret. Comput. Sci. 34 (1984), 275–288. DOI 10.1016/0304-3975(84)90055-0 | MR 0773457 | Zbl 0551.68047
[16] Keimel, K., Lawson, J. D.: D–completions and the d–topology. Ann. Pure Appl. Logic 159 (3) (2009), 292–306. DOI 10.1016/j.apal.2008.06.019 | MR 2522623 | Zbl 1172.54016
[17] Lawson, J. D.: The duality of continuous posets. Houston J. Math. 5 (1979), 357–394. MR 0559976 | Zbl 0428.06003
[18] Lawson, J. D.: Spaces of maximal points. Math. Structures Comput. Sci. 7 (5) (1997), 543–555. DOI 10.1017/S0960129597002363 | MR 1486322 | Zbl 0985.54025
[19] Liang, L., Klause, K.: Order environment of topological spaces. Acta Math. Sinica 20 (5) (2004), 943–948. DOI 10.1007/s10114-004-0365-8
[20] Martin, K.: Ideal models of spaces. Theoret. Comput. Sci. 305 (2003), 277–297. DOI 10.1016/S0304-3975(02)00698-9 | MR 2013575 | Zbl 1044.54005
[21] Martin, K.: The regular spaces with countably based models. Theoret. Comput. Sci. 305 (2003), 299–310. DOI 10.1016/S0304-3975(02)00700-4 | MR 2013576 | Zbl 1053.54037
[22] Martin, K.: Topological games in domain theory. Topology Appl. 129 (2) (2003), 177–186. DOI 10.1016/S0166-8641(02)00147-5 | MR 1961398 | Zbl 1026.06012
[23] Scott, D. S.: Continuous lattices. Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer–Verlag, 1972, pp. 97–136. MR 0404073 | Zbl 0239.54006
[24] Tong, H.: Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952), 289–292. DOI 10.1215/S0012-7094-52-01928-5 | MR 0050265 | Zbl 0046.16203
[25] Waszkiewicz, P.: How do domains model topologies. Electron. Notes Theor. Comput. Sci. 83 (2004), 1–18.
[26] Wyler, O.: Dedekind complete posets and Scott topologies. Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 384–389. Zbl 0488.54018
[27] Zhao, D.: Poset models of topological spaces. Proceeding of International Conference on Quantitative Logic and Quantification of Software, Global–Link Publisher, 2009, pp. 229–238.
[28] Zhao, D., Fan, T.: dcpo-completion of posets. Theoret. Comput. Sci. 411 (2010), 2167–2173. DOI 10.1016/j.tcs.2010.02.020 | MR 2662513 | Zbl 1192.06007
Partner of
EuDML logo