[1] Balinsky, A., Ryan, J.: 
Some sharp $L^2$ inequalities for Dirac type operators. SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. 
MR 2366908 | 
Zbl 1141.15026[5] Cnops, J., Malonek, H.: 
An introduction to Clifford analysis. Textos Mat. Sér. B (1995), vi+64. 
MR 1417718 | 
Zbl 0997.15501[9] Porteous, I.: 
Clifford Algebra and the Classical Groups. Cambridge University Press, Cambridge, 1995. 
MR 1369094[10] Ryan, J.: 
Iterated Dirac operators in $C^n$. Z. Anal. Anwendungen 9 (1990), 385–401. 
MR 1119539[12] Ryan, J.: 
Dirac operators on spheres and hyperbolae. Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. 
MR 1679305 | 
Zbl 0894.30031[13] Van Lancker, P.: 
Clifford Analysis on the Sphere. Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. 
MR 1627086 | 
Zbl 0896.15015[14] Van Lancker, P.: 
Higher Spin Fields on Smooth Domains. Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. 
MR 1890463 | 
Zbl 1009.30029