Previous |  Up |  Next

Article

Title: Fixed-place ideals in commutative rings (English)
Author: Aliabad, Ali Rezaei
Author: Badie, Mehdi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 1
Year: 2013
Pages: 53-68
Summary lang: English
.
Category: math
.
Summary: Let $I$ be a semi-prime ideal. Then $P_\circ \in \operatorname{Min}(I)$ is called irredundant with respect to $I$ if $I\neq \bigcap_{P_\circ \neq P\in \operatorname{Min}(I)}P$. If $I$ is the intersection of all irredundant ideals with respect to $I$, it is called a fixed-place ideal. If there are no irredundant ideals with respect to $I$, it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point $p\in \beta X$ is a fixed-place point if $O^p(X)$ is a fixed-place ideal. In this situation the fixed-place rank of $p$, denoted by FP-$\operatorname{rank}_X(p)$, is defined as the cardinal of the set of all irredundant prime ideals with respect to $O^p(X)$. Let $p$ be a fixed-place point, it is shown that FP-$\operatorname{rank}_X (p)= \eta $ if and only if there is a family $\{Y_\alpha\}_{ \alpha \in A}$ of cozero sets of $X$ such that: 1- $|A|= \eta $, 2- $p\in \operatorname{cl}_{\beta X} Y_\alpha$ for each $\alpha \in A$, 3- $p\notin \operatorname{cl}_{\beta X} (Y_\alpha \cap Y_\beta )$ if $\alpha \neq \beta $ and 4- $\eta $ is the greatest cardinal with the above properties. In this case $p$ is an $F$-point with respect to $Y_\alpha $ for any $\alpha \in A$. (English)
Keyword: ring of continuous functions
Keyword: fixed-place
Keyword: anti fixed-place
Keyword: irredundant
Keyword: semi-prime
Keyword: annihilator
Keyword: affiliated prime
Keyword: fixed-place rank
Keyword: Zariski topology
MSC: 13Axx
MSC: 54C40
idMR: MR3038071
.
Date available: 2013-02-21T14:03:38Z
Last updated: 2015-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143152
.
Reference: [1] Aliabad A.R.: $z^\circ$-ideals in $C(X)$.Ph.D. Thesis, Chamran University of Ahvaz, Iran. Zbl 1221.54023
Reference: [2] Aliabad A.R.: Connections between $C(X)$ and $C(Y)$, where $Y$ is a subspace of $X$.Abstracts of International Conference on Applicable General Topology, August 12–18, 2001, Hacettepe University, Ankara, Turkey.
Reference: [3] Aliabad A.R.: Pasting topological spaces at one point.Czechoslovak Math. J. 56 (131) (2006), 1193–1206. Zbl 1164.54338, MR 2280803, 10.1007/s10587-006-0088-3
Reference: [4] Aliabad A.R., Badie M.: Connection between $C(X)$ and $C(Y)$, where $Y$ is subspace of $X$.Bull. Iranian Math. Soc. 37 (2011), no. 4, 109–126. MR 2915454
Reference: [5] Engelking R.: General Topology.PWN-Polish Scientific Publishing, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand Reinhold, New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [7] Goodearl K.R., Warfield R.B., Jr.: Introduction to Noncommutative Noetherian Rings.Cambridge University Press, Cambridge, 1989. Zbl 1101.16001, MR 1020298
Reference: [8] Henriksen M., Larson S., Martinez J., Woods R.G.: Lattice-ordered algebras that are subdirect product of valuation domains.Trans. Amer. Math. Soc. 345 (1994), 195–221. MR 1239640, 10.1090/S0002-9947-1994-1239640-0
Reference: [9] Henriksen M., Wilson R.G.: Almost discrete $SV$-space.Topology Appl. 46 (1992), 89–97. Zbl 0791.54049, MR 1184107, 10.1016/0166-8641(92)90123-H
Reference: [10] Larson S.: $f$-Rings in which every maximal ideal contains finitely many minimal prime ideals.Comm. Algebra 25 (1997), no. 12, 3859–3888. Zbl 0952.06026, MR 1481572, 10.1080/00927879708826092
Reference: [11] Larson S.: Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank.Comm. Algebra 31 (2003), 2183–2206. Zbl 1024.54015, MR 1976272, 10.1081/AGB-120018991
Reference: [12] Underwood D.H.: On some Uniqueness questions in primary representations of ideals.Kyoto Math. J. 35 (1969), 69–94. Zbl 0181.05001, MR 0246865
Reference: [13] Willard S.: General Topology.Addison Wesley, Reading, Mass., 1970. Zbl 1052.54001, MR 0264581
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-1_5.pdf 290.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo