Previous |  Up |  Next

Article

Title: Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series (English)
Author: Lee, Tuo-Yeong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 1
Year: 2013
Pages: 1-38
Summary lang: English
.
Category: math
.
Summary: We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series. (English)
Keyword: Henstock-Kurzweil integral
Keyword: regularly convergent multiple series
MSC: 26A39
MSC: 42A32
MSC: 42B05
idZBL: Zbl 1274.42016
idMR: MR3035494
DOI: 10.1007/s10587-013-0001-9
.
Date available: 2013-03-01T15:59:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143165
.
Reference: [1] Aubertin, B., Fournier, J. J. F.: Integrability of Multiple Series.Fourier Analysis: Analytic and Geometric Aspects. Proc. 6th Int. Workshop on Analysis and Its Applications, Univ. of Maine, 1992. Lecture Notes in Pure and Appl. Math., Vol. 157 W. O. Bray et al. Marcel Dekker New York (1994), 47-75. Zbl 0807.42005, MR 1277818
Reference: [2] Boas, R. P.: Integrability of trigonometric series I.Duke Math. J. 18 (1951), 787-793. Zbl 0045.03302, MR 0045230, 10.1215/S0012-7094-51-01872-8
Reference: [3] Boas, R. P.: Integrability Theorems for Trigonometric Transforms.Springer Berlin-New York (1967). Zbl 0145.06804, MR 0219973
Reference: [4] Bongiorno, B.: The Henstock-Kurzweil integral. Handbook of Measure Theory, Vol. I, II.North-Holland Amsterdam (2002), 587-615. MR 1954623
Reference: [5] Chew, T.-S., Van-Brunt, B., Wake, G. C.: First-order partial differential equations and Henstock-Kurzweil integrals.Differ. Integral Equ. 10 (1997), 947-960. Zbl 0890.35025, MR 1741760
Reference: [6] Faure, C.-A.: A descriptive definition of some multidimensional gauge integrals.Czech. Math. J. 45 (1995), 549-562. Zbl 0852.26010, MR 1344520
Reference: [7] Faure, C.-A., Mawhin, J.: Integration over unbounded multidimensional intervals.J. Math. Anal. Appl. 205 (1997), 65-77. Zbl 0879.26047, MR 1426980, 10.1006/jmaa.1996.5172
Reference: [8] Hardy, G. H., Littlewood, J. E.: Solution of the Cesàro summability problem for power-series and Fourier series.Math. Zs. 19 (1923), 67-96. 10.1007/BF01181064
Reference: [9] Henstock, R.: Definitions of Riemann type of the variational integrals.Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402
Reference: [10] Henstock, R., Muldowney, P., Skvortsov, V. A.: Partitioning infinite-dimensional spaces for generalized Riemann integration.Bull. Lond. Math. Soc. 38 (2006), 795-803. Zbl 1117.28010, MR 2268364, 10.1112/S0024609306018819
Reference: [11] Heywood, P.: Integrability theorems for trigonometric series.Q. J. Math., Oxford, II. Ser. 13 (1962), 172-180. Zbl 0107.05203, MR 0142970, 10.1093/qmath/13.1.172
Reference: [12] Karták, K.: K theorii vícerozměrného integrálu.Čas. Mat. 80 (1955), 400-414 Czech.
Reference: [13] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [14] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14.Cambridge University Press Cambridge (2000). MR 1756319
Reference: [15] Lee, T.-Y.: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. Lond. Math. Soc., III. Ser 87 (2003), 677-700. Zbl 1047.26006, MR 2005879, 10.1112/S0024611503014163
Reference: [16] Lee, T.-Y.: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral.J. Math. Anal. Appl. 298 (2004), 677-692. Zbl 1065.26013, MR 2086983, 10.1016/j.jmaa.2004.05.033
Reference: [17] Lee, T.-Y.: A characterisation of multipliers for the Henstock-Kurzweil integral.Math. Proc. Camb. Philos. Soc. 138 (2005), 487-492. Zbl 1078.28004, MR 2138575, 10.1017/S030500410500839X
Reference: [18] Lee, T.-Y.: Proof of two conjectures of Móricz on double trigonometric series.J. Math. Anal. Appl. 340 (2008), 53-63. MR 2376137, 10.1016/j.jmaa.2007.08.010
Reference: [19] Lee, T.-Y.: Some convergence theorems for Lebesgue integrals.Analysis, München 28 (2008), 263-268. MR 2401157
Reference: [20] Lee, T.-Y.: A measure-theoretic characterization of the Henstock-Kurzweil integral revisited.Czech. Math. J. 58 (2008), 1221-1231. MR 2471178, 10.1007/s10587-008-0081-0
Reference: [21] Lee, T.-Y.: A multidimensional integration by parts formula for the Henstock-Kurzweil integral.Math. Bohem. 133 (2008), 63-74. MR 2400151
Reference: [22] Lee, T.-Y.: Bounded linear functionals on the space of Henstock-Kurzweil integrable functions.Czech. Math. J. 59 (2009), 1005-1017. MR 2563573, 10.1007/s10587-009-0070-y
Reference: [23] Lee, T.-Y.: On a result of Hardy and Littlewood concerning Fourier series.Anal. Math. 36 (2010), 219-223. MR 2678674, 10.1007/s10476-010-0302-2
Reference: [24] Lee, T.-Y.: Some integrability theorems for multiple trigonometric series.Math. Bohem. 136 (2011), 269-286. MR 2893976
Reference: [25] Mikusiński, P., Ostaszewski, K.: The space of Henstock integrable functions II.New Integrals. Lect. Notes Math. Vol. 1419 P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney, W. F. Pfeffer Springer Berlin-Heideberg-New York (1990), 136-149. MR 1051926, 10.1007/BFb0083105
Reference: [26] Móricz, F.: Some remarks on the notion of regular convergence of multiple series.Acta Math. Hung. 41 (1983), 161-168. MR 0704536, 10.1007/BF01994074
Reference: [27] Móricz, F.: Integrability of double lacunary sine series.Proc. Am. Math. Soc. 110 (1990), 355-364. MR 1021902, 10.1090/S0002-9939-1990-1021902-5
Reference: [28] Móricz, F.: On the integrability of double cosine and sine series I.J. Math. Anal. Appl. 154 (1991), 452-465. MR 1088644, 10.1016/0022-247X(91)90050-A
Reference: [29] Móricz, F.: On the integrability of double cosine and sine series II.J. Math. Anal. Appl. 154 (1991), 466-483. MR 1088644, 10.1016/0022-247X(91)90051-Z
Reference: [30] Móricz, F.: Integrability of double cosine-sine series in the sense of improper Riemann integral.J. Math. Anal. Appl. 165 (1992), 419-437. MR 1155730, 10.1016/0022-247X(92)90049-J
Reference: [31] Ostaszewski, K.: Henstock Integration in the Plane.Mem. Am. Math. Soc. Vol. 63 (1986). MR 0856159
Reference: [32] Saks, S.: Theory of the Integral. Second revised edition.G. E. Stechert & Co. New York (1937).
Reference: [33] Talvila, E.: Henstock-Kurzweil Fourier transforms.Ill. J. Math. 46 (2002), 1207-1226. Zbl 1037.42007, MR 1988259, 10.1215/ijm/1258138475
Reference: [34] Talvila, E.: Estimates of Henstock-Kurzweil Poisson integrals.Can. Math. Bull. 48 (2005), 133-146. MR 2118770, 10.4153/CMB-2005-012-8
Reference: [35] Talvila, E.: Estimates of the remainder in Taylor's theorem using the Henstock-Kurzweil integral.Czech. Math. J. 55 (2005), 933-940. MR 2184374, 10.1007/s10587-005-0077-y
Reference: [36] Young, W. H.: On multiple Fourier series.Lond. M. S. Proc. 11 (1912), 133-184. MR 1577218
Reference: [37] Zygmund, A.: Trigonometric Series. Volumes I, II and combined. Third edition.Cambridge University Press Cambridge (2002). MR 1963498
.

Files

Files Size Format View
CzechMathJ_63-2013-1_1.pdf 432.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo